
(12) United States Patent
Shi et al.

(54) COMPUTATION PARALLELIZATION IN
SOFTWARE RECONFIGURABLE ALL
DIGITAL PHASE LOCK LOOP

(75) Inventors: Fuqiang Shi, Allen, TX (US); Roman
Staszewski, McKinney, TX (US);
Robert B. Staszewski, Delft (NL)

(73) Assignee: Texas Instruments Incorporated,
Dallas, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.c. 154(b) by 243 days.

(21) Appl. No.: 11/949,310

(22) Filed: Dec. 3, 2007

(65) Prior Publication Data

US 2009/0070568 Al Mar. 12,2009

Related U.S. Application Data

(63) Continuation-in-part of application No. 111853,575,
filed on Sep. 11,2007.

(51) Int. Cl.
G06F 9/30 (2006.01)

(52) U.S. Cl. 712/36; 708/303; 708/320
(58) Field of Classification Search 712/36;

(56)

708/303, 320
See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

4,495,591 A *
4,811 ,263 A *
5,081,604 A *
5,243,551 A *
5,432,723 A *
5,523,962 A *

111985 Loomis, Jr. 708/320
311989 Hedley et al. 708/316
111992 Tanaka 708/319
911993 Knowles et al. 708/603
711995 Chen et al. 708/300
611996 Yoshino et al. 708/319

810

\

111111 111
US007809927B2

(10) Patent No.: US 7,809,927 B2
Oct. 5,2010 (45) Date of Patent:

5,636,150 A *
5,636,353 A *
5,745,396 A *
5,761,104 A *
5,805,479 A *
6,108,680 A *

6/1997 Okamoto 708/300
6/1997 Ikenaga et al. 712/218
4/1998 Shanbhag 708/322
6/1998 Lloyd et aI 708/517
9/1998 Tang 708/316
8/2000 Liu et al. 708/317

(Continued)

OTHER PUBLICATIONS

Parhi (Chapter 10: Pipelined and Parallel Recursive and Adaptive
Filters) http://web.archive.orglweb/20030823062135/www.ece.
umn.edu/users/parhi/SLIDES/chapl0.pdf.*

(Continued)

Primary Examiner-Eddie P Chan
Assistant Examiner-Keith Vicary
(74) Attorney, Agent, or Firm-Ronald O. Neerings; Wade
James Brady, III; Frederick J. Telecky, Jr.

(57) ABSTRACT

A novel and useful apparatus for and method of software
based phase locked loop (PLL). The software based PLL
incorporates a reconfigurable calculation unit (RCU) that is
optimized and programmed to sequentially perform all the
atomic operations of a PLL or any other desired task in a time
sharing manner. An application specific instruction-set pro
cessor (ASIP) incorporating the RCU includes an instruction
set whose instructions are optimized to perform the atomic
operations of a PLL. A multi-stage data stream based proces
sor incorporates a parallel/pipelined architecture optimized to
perform data stream processing efficiently. The multi-stage
parallel/pipelined processor provides significantly higher
processing speeds by combining multiple RCUs wherein
input data samples are input in parallel to all RCUs while
computation results from one RCU are used by adjacent
downstream RCUs. A register file provides storage for his
torical values while local storage in each RCU provides stor
age for temporary results.

22 Claims, 26 Drawing Sheets

r----------- -----------------,
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

US 7,809,927 B2
Page 2

u.s. PATENT DOCUMENTS

6,115,580 A *
6,122,653 A *
6,272,616 Bl *
6,438,570 Bl *
6,809,598 Bl
7,584,342 Bl *

200210049799 Al *
2004/0093366 Al *
2006/0033582 Al
2006/0038710 Al
2006/0195498 Al *
2007/0260856 Al *
200910030961 Al *

912000 Chuprun et al. 455/1
912000 Kuroda 708/320
8/2001 Fernando et al. 712/20
8/2002 Miller 708/625

1012004 Staszewski et al.
912009 Nordquist et al. 712/22
4/2002 Wang 708/320
5/2004 Gagnon et al. 708/300
212006 Staszewski et al.
212006 Staszewski et al.
8/2006 Dobbek et al. 708/300

1112007 Tran et al. 712/217
112009 Matsuyarna et al. 708/320

OTHER PUBLICATIONS

Parhi et al. (Pipeline Interleaving and Parallelism in Recursive Digi
tal Filters-Part I: Pipelining Using Scattered Look-Ahead And
Decomposition) This paper appears in: Acoustics, Speech and Signal
Processing, IEEE Transactions on; Jul. 1989; vol. 37, Issue: 7; On pp.
1099-1117.*
Parhi et al. (Pipeline Interleaving and Parallelism in Recursive Digi
tal Filters-Part II: Pipelined Incremental Block Filtering) This paper
appears in: Acoustics, Speech and Signal Processing, IEEE Transac
tions on; Jul. 1989; vol. 37, Issue: 7; On pp. 1118-1134.*
Wu et al. (Application-Specific CAD ofVLSI Second-Order Sec
tions) This paper appears in: Acoustics, Speech and Signal Process
ing, IEEE Transactions on; Publication Date: May 1988; vol. 36,
Issue: 5; On pp. 813 -825. *
Lu et al. (Fast Recursive Filtering with Multiple Slow Processing
Elements) This paper appears in: Circuits and Systems, IEEE Trans
actions on; Publication Date: Nov. 1985; vol. 32, Issue: 11; On pp.
1119-1129.*

Sung et al. (Efficient Multi-Processor Implementation of Recursive
Digital filters) This paper appears in: Acoustics, Speech, and Signal
Processing, IEEE International Conference on ICASSP '86.; Publi
cation Date: Apr. 1986; vol. 11, On pp. 257-260.*

Lorca et al. (Efficient ASIC and FPGA Implementations ofIIRFilters
for Real Time Edge Detection) This paper appears in: Image Process
ing, 1997. Proceedings., International Conference on; Publication
Date: Oct. 26-29,1997; On pp. 406-409 vol. 2.*

Moyer (An Efficient Parallel Algorithm for Digital IIR Filters); This
paper appears in: Acoustics, Speech, and Signal Processing, IEEE
International Conference on ICASSP '76.; Publication Date: Apr.
1976; vol. 1, On pp. 525-528. *

Wong et al. (Computer-Aided Design of Pipe lined IIRDigital Filters)
This paper appears in: Circuits and Systems, 1992., Proceedings of
the 35th Midwest Symposium on; Publication Date: Aug. 9-12,1992;
On pp. 795-799 vol. 2.*

Ljung (Embedded. com: How to Create Fixed- and floating-point IIR
filters for FPGAs) Published May 31, 2006, Accessed Dec. 10,
2009.*

Staszewski et al. (VHDL Simulation and Modeling of an All-Digital
RF Transmitter) This paper appears in: System-on-Chip for Real
Time Applications, 2005. Proceedings. Fifth International Workshop
on; Publication Date: Jul. 20-24, 2005; On pp. 233-238. *

Krenik et al. (Digital RF and Handset Integration) Wireless Design &
Development 1 Nov. 1,20051 Accessed Dec. 10,2009.*

Curtin et al. (Phase-Locked Loops for High-Frequency Receivers and
Transmitters-Part 1) Analog Dialogue: vol. 33, No.3, Mar. 1999.*

U.S. Appl. No. 111853,575, filed Sep. 11,2007, Staszewski et al.

U.S. Appl. No. 111853,588, filed Sep. 11,2007, Staszewski et al.

* cited by examiner

u.s. Patent Oct. 5,2010

170\...

REFERENCE
CLOCK

172

PHASE
DECT

Sheet 1 of26

174

FILTER

FIG. 1
(PRIOR ART)

10"'\... 12

MEM1 MEM2 MEM3

IN
F1 F2 F3

14 FIG. 2
(PRIOR ART)

INSTRUCTION /18
MEMORY

t
/20

FETCHING

16"\...

DECODING
/22

t
ALU

24
DATA BUS I

REGISTER DATA

MEM4

F4

~9
26/ FILE MEMORY [\.. 28

FIG. 3
(PRIOR ART)

US 7,809,927 B2

OUT

1-
50

62

61

32

~ Xtal6-r38

51

SCRIPT
PROCESSOR

60

+

---;:-=-=-=-=-=-=-=-=-=-=-=~ 44
42 ~ 40 DIGITAL LOGIC AMPLITUDE MODULATION : I

FREFI I I
PHASE DOMAIN DCO 56 RF I

FCW I CALCULATION OUT FRONT-END
I (ASIP) 59 I MODULE

r----~.I 48 I
I DM I
I LO I
L _ _ 69 CLOCK TX I

---------- ------~ r---------- ---------- -------,
I ' 63 I
I I RFIN

I v. '"""-J - I
I 7 (\ CURRENT I

~_!~ ____ ~ ______ ~ ___ \~MPL~ ____ ~JI

58 I
TEST (RFBIST) 1'-36 RADIO I

\- ~

31
68/0 -:!:- VBAT

-I
FIG. 4 " 30

-=

~
7Jl
•
~
~
~
~ = ~

o
(') ...
~Ul

N
o
o

rFJ

=('D
('D
N
o
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

u.s. Patent Oct. 5,2010 Sheet 3 of26 US 7,809,927 B2

70

r--------~------------------------,
COMMUNICATION DEVICE (CELLULAR PHONE)

96
94

74

L------l FM RECEIVER

82

84
81

92

78

86

88

BLUETOOTH

WLAN

USB

AUDIO
CODEC

80

UWB

KEYPAD

VIBRATOR

GPS

RF TRANSCEIVER
97

'" SOFTWARE
RECONFIGURABLE

ADPLL (ASIP)

DIGITAL
BASEBAND

PROCESSOR

71

98

100
CAMERA 104

TV TUNER

106

108

110

112

114

SIM CARD

WI MAX

USB POWER 1------1--1

118

ACI DC c

ADAPTER 120

I

I 122 124 L ________________ ~

FIG. 5

130\

168
DATA

CHANNEL
FREQUENCY

COMMAND
WORD (FCW)

COMPLEX
PULSE

SHAPING
FILTER

CKR
r-------
I
I
I
I

TDC

162

RETIMER

y[k]

DCO PERIOD
NORMALIZATION

DATAFCW

FREQUENCY ERROR
ACCUMULATOR

140

156
VARIABLE PHASE
ACCUMULATOR

RETIMED FREF (CKR)
I

161 ~ ADPLL 132 I
I
L ____ _

166

AMPLITUDE CONTROL
WORD (ACW)

CKV

(1.6-2.0 GHz)

154

RF LB

RF HB
------i

...J FIG. 6

~
7Jl
•
~
~
~
~ = ~

0
(') ...
~Ul

N
0
0

rFJ

=('D
('D
.j;o.

o
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

180

r-------~----------------,
I SOFTWARE BASED ADPLL

I t"'Kuvt.~~IN\:i

V 182
I CLOCK PROGRAMABLE

I FRACTIONAL -N

I CLOCK DIVIDER

I
I DLO DCO

FCW I PHASE UPDATE CKV

FREF :
DOMAIN rv

CALCULATOR
1'-174

I 186

f I INTEGER
I

FEEDBACK i'- 188 I
I
I FRACTIONAL
I FEEDBACK i'-1AQ
L IVV ...J

FIG. 7

PROCESSING n n n 0 0 0 0 0 0

CLOCK ---1 LJ LJ L

~F~ I
\

FIG. 9 212

210

~
7Jl
•
~
~
~
~ = ~

o
(') ...
~Ul

N
o
o

rFJ

=('D
('D
Ul
o
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

190 FIG. 8
r--------~-----------------------------,

PROCESSING I PHASE DOMAIN CALCULATOR
CLOCK I

T

FCW

I

INTEGER AND T

FRACTIONAL TERMS :

FREF :

I

192 "-lINSTRUCTION
AND DATA
MEMORY

i
+

SEQUENCER

1 7
1 196
1

1

1

1

CK

Ra Rb

REGISTER FILE

+
1

1

1

1

1

1/194

W

~+~-+-T--~--I--I--i
.--------1-1 -------,

198 I ~
v
~

ALU

202

'--

204 I----l 206

v r-I>

I' rr;sv 208 209 1-1 ------i

v r-----1>

L ______________________________________ ~

DLO
UPDATE

~
7Jl
•
~
~
~
~ = ~

o
(') ...
~Ul

N
o
o

rFJ

=('D
('D
0\
o
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

220

r--------------~-----------------------------,
I A SOFTWARE BASED ADPLL I

I 1-4 ex-GAIN I
I I
Ir------------ ----- ----------------. I
I I 226 228 232 I VCO I
I I 236 I 238 240 I

FCW I I z -1 y2 IIR IIR I I
...--.-+---..

CKV

1-z -1 1-4 9s I

y16 230 I
I

z -1 I
1-z -1 I

254 1-z -1 I

fR

KDCO
248 252 I

I y15 PHASE CALCULATION 250 I

L_ -----;r--------- --------- --- --~
222 PhE OFFSET p-GAIN GAIN

242 I I

r

246 244 L_________________________ _ _________________ J

FIG. 10

~
7Jl
•
~
~
~
~ = ~

0
(') ...
Ul
~

N
0
0

rFJ

=-('D
('D
-....l
0
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

FCW

260

I----~-----------I
I r-----------------------. I

ASIP I

264

266

268

270 272
DATA BUS

REGISTER
FILE

280

DATA
MEMORY

282

274 276

I I
I

V262 I
I
I
I
I
I

INTERFACE I DCO TUNE

VCO I
286 I

284 PhV
L _______________________ ~

\ \

L SOFTWARE BASEDADPLL 289 288 I ________________ ---1

FIG. 11

CKV

~
7Jl
•
~
~
~
~ = ~

o
(') ...
~Ul

N
o
o

rFJ

=-('D
('D
QO

0
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

u.s. Patent Oct. 5,2010 Sheet 9 of26 US 7,809,927 B2

Yk =(1-a)* Y k-1 +a * x k }

H(z)= a FIG. 12A
1-(1-a) * z -1

a

FIG.12B

290
~

296

}+-----; Y k-1

298
a

304
300
~

I+-----+Y k-1

a

306

r---------------I
I 312 314 RCU
I
I
I
I
I
I

310;:
I
I
I FIG.12D L ___________ ...J

Ra a Rb Rd

u.s. Patent Oct. 5,2010 Sheet 10 of 26

CONTRO~n
r _ ~O~IGURA~I~{l __

326 RCU

324
Ra

334 +--_-+------'

Rb
L ____ _

a
336

320
,r-'

-----,
330 I

~322

I Rd
I
I
I
I
I
I
I
I
I _____J

FIG. 13 340

y15
(IN)

Rb

,----------
I RCU

~ III

a

FIG. 14

US 7,809,927 B2

350
,r-'

----..,
I
I

Rd

u.s. Patent

y16
(FROM LOCAL)

y2
(FROM REG)

Oct. 5,2010 Sheet 11 of 26

Rd_st

352
~

-----,
I
I Rd

I
y2 I

'--r"""T"""l~ (TO REG) :

I
I
I
I

'-----+----+-1 1--------' I

I
a

FIG. 15

_________ ..J

Ra

,----------
I RCU
I
I

I
I
I
I
I
I
I ~----,.""""

US 7,809,927 B2

354
~

------,
I

I Rd
I

I
I
I
I
I
I
I

Rb I L=~==~~====~I _____ :J L _______ _

a

FIG. 16

u.s. Patent Oct. 5,2010 Sheet 12 of 26

Ra

Rb

,----------
RCU

356
~

-----,
I
I Rd

I
I
I
I
I
I
I
I

1---+-+-------' I L _____________ J

a

FIG. 17

y6
(FROM LOCAL)

y10
(FROM REG)

US 7,809,927 B2

Rd_st

358
~

-----,
I
I Rd

I
I
I
I
I
I
I
I
I _________ ..J

a

FIG. 18

u.s. Patent Oct. 5,2010 Sheet 13 of 26

r----------
1 RCU
1

y 1 0 1.....-----.----=-1_--:--":""""":".....,.......

Rb

1
1
1
1
1
1
1
I y11 '---~ ____ L _______ _

rho

FIG. 19

Rd_st

US 7,809,927 B2

360
~

------,
1

1 Rd

1
1
1
1
1
1
1
1
1 _ ____ J

u.s. Patent

o
('0...
('I')

Oct. 5,2010 Sheet 14 of 26

o 0

o 0

o 0

o 0

o 0

o 0

LL ~Z>-.....J ~::::.::: ~Z.....J LU LU-O.....J
~ s:oo«a.. 00 LU-.....J
LL OLU(!)O 000 s:ooa..

a..(!)LU« OO.....J OLUO
~.....J LUO a..(!)«
:::J 0 ~s:
00 0 :::JLU

~ OOz
a..

US 7,809,927 B2

co
('0...
('I')

o
N

u.s. Patent

POWER

Oct. 5,2010

,--,
I I

382 / IV 380
I I
I I
I I
I I
I I
I I

I

Sheet 15 of 26 US 7,809,927 B2

384

~----------------------------~FREQUENCY

FIG. 21

,--,
I I

392 / IV 390
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

FIG. 22

740

742

744

392

PARTITION TASK INTO
ATOMIC OPERATIONS

SPREAD OUT COMPUTATIONS OF
ATOMIC OPERATIONS OVER AN

ENTIRE REFERENCE CLOCK CYCLE

PERFORM COMPUTATIONS OF
ATOMIC OPERATIONS AT HIGHER

PROCESSOR CLOCK RATE

FIG. 23

FIG. 24
~-----------------------~
I 554"""-1 1 I

I I tJKOGKAMMA~ll:: I-KAG IIONAl -N GlOGK IJIVIIJI::K I

5

·---------------------------------------1 I PROCESSING CLOCK I

50'--1 REGISTER FILE V 560 ~552
558'\. INSTRUCTION Ra Rb W I AND DATA PHASE DOMAIN

MEMORY + CALCULATOR I 1 I SOFTWARE
+: ~ffi~~

I i---f SEQUENCER - - f----,-- --r---- ----,
I I I 4~~:

I 562 I I I 568- ~ I I - ~ DLO DCO
I ~ ALU UPDATE~ I L~ ~ 572 r-+- 574 - 576 I rv

FCW ~ r-> I 556
I ,------. 564 566 570 - / :

I r+~ -~ r ~ :
F~F I I

I~I=:~~;----------------------------------~
~ INTEGER FEEDBACK I·

I 578 I FRACTIONAL FEEDBACK I

L 579./" I _______________________ ----1

~
7Jl
•
~
~
~
~ = ~

o
(') ...
~Ul

N
o
o

rFJ

=('D
('D
0\
o
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

r:,,=~= ,,=~ 584 '-i nnnnr,. .. :-n, :-:-nH",n., A' -- -- I
- rr\UV!:\:l\:lII'l\:l vLUvl\ I t'KU\jKAIVIMAtlLt:t-KAL>IIUI'IAL I

I -N CLOCK DIVIDER I I
I r-----------------------. I I PHASE DOMAIN CALCULATOR I

I I V 594
I I I RAM/ROM I

I I
1 :..-r 582 I I

FCW I I DSP
V 595 I I I v I

I : 592,- EXT I I
FREF I BUS IIF 599 I

I / I I I I

I I I I I I DCO

I I 596 UART I I TIMER 598: DLO 586 I I

I I I UPDATE CKV I L ___ rv I -- ------------------~
I PhV/

--~> I -- I I
588/1.

INTEGER FEEDBACK I I I
I ~ FRACTIONAL FEEDBACK : I

L - - - -7 _SOFTWAREBASEDADPLL_ - - - - - ~

580 FIG. 25

~
7Jl
•
~
~
~
~ = ~

o
(') ...
~Ul

N
o
o

rFJ

=('D
('D
-....l
o
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

I ------------------------~ 604""""\..J I I
"T] 603--1

I PKUGKAMMAI::ILI: t-KAC IIUNAL -N CLUCK lJlVllJl:K I

I :;0

~r---,

I 612 614 616 618 620 6~ 622 624 626 628 630 632 I I I
\

Ie
"T]I"T] 1""0 I ,T §; 0 0
01 0

z -1 I --i , '" ~J ~ IIR I ma < I FF SUB FF f+ f-+ MULT FF f-+ IIR f+ ADD f+ FF MULT FF rv I
1 -1 1-4 -z

I - '--r- - A -t.r- '--~ ~ 1 T T -r- 606

~
634 DCO I

6~ 654 656 650 FF

~ I
1 -1

z -1 I -z - SUB f-_ FF -- f+ MULT

A
1-z -1 i'- 652 I _,...- '--- A \ '--_

I 658

6~ 640 LAMDA I GAIN 3 644 646 ~8 I I
~602 FF PHE ~AIN 1 I I ~AIN2 I I 1 642 A I

1 1 I I I
PHASE DOMAIN CALCULATOR I

L ____
~-

___________________________________ J I PhV -r<. - -' I I
608 A

INTEGER FEEDBACK I I SOFTWARE
~ FRACTIONAL FEEDBACK I· _ a ______ ••

L--;r--
600

610 -----~
FIG. 26

~
7Jl
•
~
~
~
~ = ~

o
(') ...
~Ul

N
o
o

rFJ

=('D
('D
QO

o
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

u.s. Patent Oct. 5,2010 Sheet 19 of 26

662

n n
CK1

---.n n
CK2

n
CK3

n
CK4 • • 672

I I
I I

CKVD CKVD

I FREF FREF
\\

FIG. 27 674

682

PHASE I--+---------~

CKVD

FREF

FIG. 28
\\
689

FSM

CKVD

I FREF

US 7,809,927 B2

664

666

668

670

~
660

684

~
680

u.s. Patent

870

\

r-------, 876

DATA
POOL

876

Oct. 5,2010

IF ID

IF ID

"IF
"-

IF

872 FIG. 30

880

882 882 I
,""5(4),5(3),5(2),5(1)

FIG. 31

Sheet 20 of 26

EX

EX

ID

ID

IF

IF

MEM /WB~ //""/

MEM ~W~~ ///

EX ~~E~~ WB

EX "MEM/
'/"'/") WB

ID I:r(~% :/J;/. MEM

ID /.%1;/
~J~~ MEM

IF %lr0 'iJ~ EX

I"IF
"'-
%(D~ ,/.;-1,% I"EX ",
%IF~ '/>~ ID

%IF~ /'/~ ID

FIG. 29

890

892 \

896

RCU

WB

WB

MEM

MEM

EX

EX

FIG. 32

","0(4),0(3),0(2),0(1)

US 7,809,927 B2

WB

WB

MEM WB

MEM WB

894

o(n)

FIG. 33
708 CONTROU

CONFIG
REG
FILE

710 690

I
r----------------

TWO STAGE PARALLEU
PIPELINE PROCESSOR

----~--------~-------l

.. s(4), s(3), s(2), s(1)

CTRL1

696 Ra1

.. s(3), s(1)

Rb1

RCU1

700 Rb2

704

699

.. 0(3),0(1)

Rd1

692 694 v- DLY CTRL 2 .. 0(4),0(2)
I Rd2 I .. s(4), s(2)
I

I 698 706
I

I Ra2
I 714 716 1--------+1 L2
I

I 702 I

691 ~ 701

I
I
I
I
I
I
I
I I .. 0(4), 0(3), 0(2),0(1)1

L _____________________________________ ~

718

~
7Jl
•
~
~
~
~ = ~

o
(") ...
~Ul

N
o
o

rFJ

=('D
('D
N
o
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

u.s. Patent

INPUT

Oct. 5,2010 Sheet 22 of 26

720

\

FIG. 34

INSTRUCTION FETCHING

INSTRUCTION DECODING

792

794

r---- --------,
I
1796

791~
800

: 798
I
I
I
I
I
I THREE STAGE PIPELINE RCU
I CONTROL

802

804

L _____________ .J

FIG. 37

US 7,809,927 B2

OUTPUT

~790

742 FIG. 35

i--------------------------------------·
I 734 744 Rb1 I

I .. 53,51 I
.. 53,52,51 I 738 .. 0(3),0(1) I

Rd1 I I .. 03,02,01

I
I
I

731 I "-I

.. s4,52

PARRALLEU PIPELINE WITH FORKING

754

751 750

.. 04,02

761 I 758

L ____________________ I _________________ ~

766

~730

~
7Jl
•
~
~
~
~ = ~

o
(") ...
~Ul

N
o
o

rFJ

=('D
('D
N
(.H

o
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

INSTRUCTION FETCHING 786

INSTRUCTION DECODING 788

r------- --- ----------- -I
I Rb1 Rd1 I

INPUT I 772 I OUTPUT
SAMPLES I I SIGNALS

I
I Ra1

771 I 778 rl'J ~
I
I
I
I

~ ~I II .'
784

780
I RCU CONTROL

I

I
I
I
I
I
I
I
I
I L ______________________________ J

FIG. 36

~770

~
7Jl
•
~
~
~
~ = ~

o
(') ...
~Ul

N
o
o

rFJ

=('D
('D
N
.j;o.

o
N
0\

d
rJl
-....l
00 = \C
\c
N
-....l

= N

u.s. Patent Oct. 5,2010 Sheet 25 of 26 US 7,809,927 B2

.. S3,
S2,
S1

810

\ 812 REG FILE I
FIG. 38

r-----------------------------.

818
\

~

.. S4, S1

834
;

830 r-
~~

-----+ V ---+ 832 --t--..

~----------~ ~V
Rb2 ~

842 -----+ I ~
\ 846 r--

--+-+-I 816 1_ >

.. S6,S3

............ 838
4 ~ \

,.-L--lL-..,

840
\

Ra2 836 --+- RCU2
r-~> L21,r----I

,--J-....,

>

(860 r-

THREE STAGE PIPELINEI 856 -----+ V
PARALLEL PROCESSOR L __________________________ \ __ ~

I REG FILE 814 811

u.s. Patent Oct. 5,2010 Sheet 26 of 26 US 7,809,927 B2

FIG. 39

TIME RCU1 RCU2 RCU3

T1 81---+- F1 ~NA

T2 81---+- F2 82---+- F1

T3 81---+- F3 52-:> 83 ---+- F1 (st)

T4 81---+- F4 82---+-F3 83 ---+- F2 (st)

T5 84---+- F1 ~_F4 83 ---+- F3 (st)

T6 84---+- F2 85---+- F1 83 ---+- F4 (st)

T7 84---+- F3 55-:> 86 ---+- F1 (st)

T8 84---+- F4 85---+-F3 86 ---+- F2 (st)

T9 87---+- F1 ~_F4 86 ---+- F3 (st)

T10 87 ---+- F2 88---+- F1 86 ---+- F4 (st)

T11 87 ---+- F3 58_:> 89 ---+- F1 (st)

T12 87 ---+- F4 88---+-F3 89 ---+- F2 (st)

T13 810---+- F1 ~_F4 89 ---+- F3 (st)

T14 810 ---+-F2 89---+- F1 89 ---+- F4 (st)
~

US 7,809,927 B2
1

COMPUTATION PARALLELIZATION IN
SOFTWARE RECONFIGURABLE ALL

DIGITAL PHASE LOCK LOOP

REFERENCE TO PRIORITY APPLICATION

This application is a continuation-in-part (CIP) of u.s.
application Ser. No. 111853,575, filed Sep. 11, 2007, entitled
"Software Reconfigurable Digital Phase Lock Loop Archi
tecture", incorporated herein by reference in its entirety.

CROSS-REFERENCE TO RELATED
APPLICATION

This application is related to U.S. application Ser. No.
111853,588, filed Sep. 11, 2007, entitled "Computation
Spreading for Spur Reduction in a Digital Phase Lock Loop",
incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

The present invention relates to the field of data commu
nications and more particularly relates to a software recon
figurable all digital phase locked loop (ADPLL) architecture
and application specific instruction-set processor related
thereto.

BACKGROUND OF THE INVENTION

Phase locked loop (PLL) circuits are well known in the art.
A block diagram illustrating an example prior art phase
locked look (PLL) circuit is shown in FIG. 1. The typical PLL
circuit, generally referenced 170, comprises phase detector
172, loop filter or low pass filter (LPF) 174 and voltage
controlled oscillator (VCO) 176.

In operation, a frequency reference clock signal, often
derived from a crystal oscillator, is input to the phase detector
along with the YCO output signal (often divided down). The
phase detector, typically implemented as a charge pump or
mixer, generates a phase error (PHE) proportional to the
phase difference between the reference clock input signal and
the YCO output clock signal. The resultant PHE signal is then
low pass filtered to yield a slow varying frequency command
signal that controls the frequency of the YCO. The frequency
command signal is input to a YCO or digitally controlled
oscillator (DCO) such that the YCO output frequency/phase
is locked to the reference clock with a certain fixed relation
ship. This oscillator generates an RF signal whose frequency
depends on the frequency command signal.

In wireless communication systems, e.g., GSM, UMTS,
Bluetooth, WiFi, etc., the RF synthesizer is a fundamental
block that is used to provide a high quality, high frequency RF
carrier for the transmitter and a local oscillator clock for the
receiver, whose output frequency can range from several hun
dreds of MHz to several GHz. Different applications with
different standards require different RF frequencies with dif
ferent RF performance requirements. The RF clock generat
ing the RF carrier plays a critical role in the entire wireless
communication system. The quality of the RF clock directly
affects the communication performance and often is the
determining factor whether the system meets standards speci
fications.

Typically, the RF synthesizer is implemented using a phase
locked loop (PLL) typically using a pure hardwired (i.e. fixed
hardware with limited reconfigurability) design approach. All
digital phase locked loops (ADPLLs) for RF synthesizer con
struction targeting wireless communications are known in the

2
art. ConventionalADPLL circuits, however, are implemented
as purely fixed hardware based (or hardwired) with very
limited reconfigurability. It is thus difficult for one design to
support multi-standard wireless applications, e.g., GSM,

5 GPRS, EDGE, WCDMA, etc. as well as wireless data net
works, such as Bluetooth, WiFi and WiMAX.

Once a hardwired circuit design is committed to a physical
implementation, there is little that can be changed regarding
the transfer function or operation of the ADPLL. Any modi-

10 fication requiring logic and intercounect change results in
numerous time consuming steps within the ASIC creation
process (i.e. timing closure, physical design, etc.) typically
requiring significant engineering resources and months of
delay to launch a product. In addition, once the silicon is

15 manufactured, any change to the ADPLL architecture makes
an even costlier impact, making such changes virtually
impractical.

In general, a main difference between a hardwired imple
mentation and a microprocessor based implementation is that

20 the microprocessor implementation uses shared hardware
running at higher speed, while the hardwired implementation
uses dedicated hardware running at lower speed. A block
diagram illustrating an example prior art generalized process
ing block using a dedicated hardware implementation is

25 shown in FIG. 2. The hardwired implementation, generally
referenced 10, comprises a plurality of dedicated hardware
blocks 12 for each function 14. The circuit provides memory
(Meml, Mem2, Mem3, Mem4) and dedicated hardware for
each function (Fl, F2, F3, F4), wherein each block runs at the

30 data path speed f s-
A block diagram illustrating an example prior art general

ized processing block using a processor based implementa
tion is shown in FIG. 3. The circuit, generally referenced 16,
comprises instruction memory 18, instruction fetch 20,

35 instruction decode 22, ALU 24, data bus 29, register file 26
and data memory 28. The processor based solution has one
shared hardware blockALU that can be configured to execute
any of the four functions (Fl, F2, F3, F4). The ALU is pro
grammed by the instructions stored in instruction memory 18

40 and the ALU is adapted to run four times faster (4fs) to
complete the data processing within the data path speed off s'

It is important to note that theALU 24 typically has a set of
general purpose instructions which precludes its applicability
in many applications, especially its use in low-power RF

45 synthesizer circuits.
With CMOS process technology currently advancing from

65 nm to 45 nm to 32 nm, transistors are becoming faster and
faster. The interconnections, however, are becoming more
and more dominant in SOC design regarding the delay and

50 area contribution. The interconnections in a hardwired design
having a large area will significantly slow the circuit speed
while adding a significant silicon area overhead. Since pro
cessor based solutions run at higher speed with shared hard
ware, resulting in smaller area, advancements in semiconduc-

55 tor technology will make processor based solutions more and
more attractive. This further favors use of multiple but smaller
processors with a dedicated instruction set rather than one
processor with a more general instruction set.

Furthermore, in conventional ADPLL circuits, the digital
60 part oflocal oscillator (DLO) (i.e. a portion oftheADPLL) is

implemented using dedicated random logic gates. Thus, all
computations are launched on the rising edge of the ADPLL
system reference clock and latched on the next rising edge.
Since a majority of the circuit switching activity is centered

65 on the rising edge of the system reference clock, most of the
digital current is being switched at that point as well, creating
large current transients. These digital current surges find their

US 7,809,927 B2
3

way into on-chip DCO and PA circuit nodes via various
coupling mechanisms, e.g., capacitive, etc. These distur
bances at the system clock rate have strong sub-harmonics
that are up converted into sensitive areas of the RF spectrum,
resulting in unacceptable RF spurs.

4
transient generated by the computations. Further, the fre
quency content of the current transients is at the higher pro
cessor clock frequency. This results in a significant reduction
in spurs within sensitive portions of the output spectrum.

It is thus desirable to have a processor based PLL architec
ture that is software based and programmable. The program
mable PLL should provide an on-the-fly reconfiguration
capability which eases silicon debugging and development
tasks and provides multi-standard operation capability. Fur- 10

ther, the software based PLL architecture should create sig
nificantly lower concentration of current transients thus
reducing the generation of spurs in the output spectrum. At
the same time, the unavoidable spurious energy that is gen
erated by the logic activity and coupled into RF circuits 15

should be pushed higher in frequency where they lie outside

In other embodiments, a data stream based processor incor
porating a combination parallel/pipelined architecture is opti
mized to perform data stream processing in an efficient man
ner. The parallel/pipelined processor provides for
significantly higher processing speeds by combining multiple
RCV s such that input data samples are input in parallel to all
RCVs while computation results from one RCV are used by
adjacent downstream RCVs. A register file provides storage
for historical values while local storage in each RCV provides
storage for temporary results.

An example application is provided of the software based
phase locked loop incorporated in a single chip radio, e.g.,
Bluetooth, GSM, etc., that integrates the RF circuitry with the
digital base band (DBB) circuitry on the same die.

of or can be easily filtered out of critical frequency bands.

SVMMARY OF THE INVENTION

The present invention is a novel and useful apparatus for
and method of software based phase locked loop (PLL). The
processor-based PLL (i.e. all digital phase-locked loop or
ADPLL) architecture described herein can be used for RF
frequency synthesis in radio transceivers and other applica
tions.

The software based phase locked loop of the present inven
tion incorporates a reconfigurable calculation unit (RCV) that
can be programmed to sequentially perform all the atomic
operations of a phase locked loop or any other desired task.
The RCV is a key component in a so called application
specific instruction-set processor (ASIP). The ASIP includes
an instruction set that comprises instructions optimized to
perform the individual atomic operations of a phase locked
loop.

The reconfigurable computational unit (RCV) is time
shared for all computations within the phase locked loop. The
reconfigurable computational unit and related configuration
control logic replaces the dedicated and distributed random
logic inside the conventional digital PLL. The reconfigurable
computational unit is controlled via microcode stored in on
chip memory (e.g., RAM or ROM). Since the computational
unit is time shared among all operations, it is operated at an
oversampled rate that is high enough to insure the proper
implementation of the phase locked loop. In order to achieve
this, the reconfigurable computational unit is optimized to
perform all computations of the phase locked loop atomic
operations within a single reference clock cycle.

In one embodiment, the instruction set is implemented in
microcode that is stored in volatile or non-volatile memory.
Thus, the ASIP can easily be reconfigured to implement cus
tomized designs for different applications, such as multiple
cellular standards, including GSM, GPRS, EDGE, WCDMA,
Bluetooth, WiFi, etc., as well as wireless data network stan
dards, including Bluetooth, WiFi, WiMAX, etc. The ASIP
can be configured on the fly to handle the different RF fre
quency and performance requirements of each communica
tion standard. The software based PLL of the present inven
tion provides the flexibility for a more unified design that fits
different applications.

In a second embodiment, the phase locked loop task is
partitioned into a plurality of atomic operations. The ASIP is
adapted to spread the computation of the atomic operations
out over and completed within an entire PLL reference clock
period. Each computation being performed at a much higher
processor clock frequency than the PLL reference clock rate.
This functions to significantly reduce the per cycle current

Advantages of the software reconfigurable phase locked
20 loop of the present invention include the following. Firstly,

the invention enables all phase domain calculations to be
performed within one reference clock cycle due to the use of
the reconfigurable calculation unit optimized for performing
PLL calculations serially at high frequency. Secondly, defin-

25 ing the ASIP instruction set in microcode stored in volatile or
non-volatile memory makes it inherently software reconfig
urable, permitting the microcode to be replaced without
changing any lithography masks. The enables easier silicon
debugging and multi-standard radio support.

30
Thirdly, the invention permits a significant reduction in

silicon area. The invention trades the rate of operation for the
amount of active implementation area required by the process
of overs amp ling and function sharing. For an X factor

35 increase in operational frequency, there is a complimentary X
factor decrease in the required computational combinatorial
logic area. An additional area is needed due to the overhead of
computational unit multiplexing. While the storage area is
constant, the net result is a significant reduction in overall

40 implementation area required.
Fourthly, the invention enables a significant reduction of

RF spurs in the sensitive frequency bands ofaradio by chang
ing the frequency of the switching logic gates. Prior art solu
tions perform PLL computations at relatively low rates, e.g.,

45 FREF of 26-38.8 MHz. The resulting switching current tran
sients are mixed with the carrier and appear as frequency
spurs at sensitive radio frequency bands. Considering GSM,
for example, the most sensitive RX band is approximately 20
to 80 MHz away from the carrier. The invention performs the

50 bulk of computations at oversampled rates, resulting in spurs
outside sensitive regions. The amount of overs amp ling can be
controlled (e.g., increased or decreased) to provide any
desired frequency plauning by changing the frequency of the
processing clock. Fifthly, reduction in silicon area provided

55 by the invention enables power routing and decoupling
capacitance requirements to be relaxed.

Note that some aspects of the invention described herein
may be constructed as software objects that are executed in
embedded devices as firmware, software objects that are

60 executed as part of a software application on either an embed
ded or non-embedded computer system such as a digital
signal processor (DSP), microcomputer, minicomputer,
microprocessor, etc. ruuning a real-time operating system
such as WinCE, Symbian, OSE, Embedded LINUX, etc. or

65 non-real time operating system such as Windows, UNIX,
LINUX, etc., or as soft core realized HDL circuits embodied
in an Application. Specific Integrated Circuit (ASIC) or Field

US 7,809,927 B2
5

Programmable Gate Array (FPGA), or as functionally
equivalent discrete hardware components.

There is thus provided in accordance with the invention, a
processor for use in a software based phase locked loop
(PLL), comprising a first adder/subtractor operative to
receive input data, a shifter operative to shift the output of the
first adder!subtractor by a predetermined amount, a second
adder/subtractor operative to receive the output of the shifter,

6
coupled to the antenna and a baseband processor coupled to
the transmitter and the receiver.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only,
with reference to the accompanying drawings, wherein:

FIG. 1 is a block diagram illustrating a simplified block
diagram of an example prior art phase locked look (PLL)
circuit;

FIG. 2 is a block diagram illustrating an example prior art
generalized processing block using a dedicated hardware
implementation;

a latch operative to store the output of the second adder! 10

subtractor, a plurality of data paths connecting the first adder/
subtractor, the shifter, the second adder/subtractor and the
latch, the plurality of data paths configurable in accordance
with one or more control signals and wherein the processor
having an instruction set for controlling the first adder/sub
tractor, the shifter, the second adder!subtractor, the latch and
the plurality of data paths.

FIG. 3 is a block diagram illustrating an example prior art
15 generalized processing block using a processor based imple-

There is also provided in accordance with the invention, a
processor for use in a software based phase locked loop 20

(PLL), comprising one or more computation units optimized
for performing computations within a phase locked loop,

mentation;
FIG. 4 is a block diagram illustrating a single chip polar

transceiver radio incorporating a software based ADPLL
mechanism of the present invention;

FIG. 5 is a simplified block diagram illustrating an example
mobile communication device incorporating the software
basedADPLL mechanism of the present invention;

FIG. 6 is a block diagram illustrating functions of an
exampleADPLL-based polar transmitter suitable for use with
the present invention;

FI G. 7 is a simplified block diagram illustrating an embodi
ment of the software basedADPLL incorporating a processor
based phase domain calculator;

wherein the one or more computation units are time-shared
among all phase locked loop computations, data memory 25

coupled to the one or more computation units, instruction
memory coupled to the one or more computation units and
operative to store instructions for implementing the phase
locked loop, the instructions part of an instruction set and a
decoder operative to generate one or more control signals for
controlling the operation of the one or more computation

FIG. 8 is a block diagram illustrating an example embodi-
30 ment of the phase domain calculator of the present invention

in more detail;

units. FIG. 9 is a timing diagram illustrating the processing clock
and frequency reference timing;

There is further provided in accordance with the invention, FIG. 10 is a block diagram illustrating an instruction view
35 of the software based ADPLL architecture of the present

invention;

a processor based phase locked loop (PLL), comprising an
oscillator operative to generate a radio frequency (RF) signal
having a frequency determined in accordance with a tuning
command input thereto, a processor operative to generate the
tuning command, the processor comprising a reconfigurable
calculation unit (RCV) operative to perform atomic opera- 40

tions required to implement the phase locked loop, data
memory coupled to the reconfigurable calculation unit for
storing phase locked loop state information, program
memory coupled to the reconfigurable calculation unit for 45

storing a plurality of instructions that when executed on the
processor implement the phase locked loop and the processor
having an instruction set, wherein each instruction is opera
tive to perform an atomic operation of the phase locked loop.

FIG. 11 is a block diagram illustrating an example proces
sor based software AD PLL architecture of the present inven
tion;

FIG. 12A is a diagram illustrating the output and transfer
function equations for the infinite impulse response (IIR)
filter portion of the ADPLL;

FIG. 12B is an equivalent block diagram implementing the
output equation shown in FIG. 12A;

FIG. 12C is an equivalent block diagram implementing the
output equation shown in FIG. 12A whereby the multiplica
tion operations have been replaced with shift operations;

FIG. 12D is a diagram illustrating the resultant reconfig
urable calculation unit (RCV) implementing the output equa-

50 tion shown in FIG. 12A; There is also provided in accordance with the invention, a
radio comprising a transmitter coupled to an antenna, the
transmitter comprising a software based phase locked loop
(PLL), the phase locked loop comprising an oscillator opera
tive to generate a radio frequency (RF) signal having a fre
quency determined in accordance with a tuning command 55

input thereto, a processor operative to generate the tuning
command, the processor comprising a reconfigurable calcu
lation unit (RCV) operative to perform atomic operations
required to implement the phase locked loop, data memory
coupled to the reconfigurable calculation unit for storing
phase locked loop state information, program memory
coupled to the reconfigurable calculation unit for storing a
plurality of instructions that when executed on the processor
implement the phase locked loop, the processor having an 65

instruction set, wherein each instruction is operative to per
form an atomic operation of the phase locked loop, a receiver

FIG. 13 is a block diagram illustrating an example RCV
unit for implementing the ADPLL circuit;

FIG. 14 is a block diagram illustrating the RCV unit for
implementing the F _Diff() instruction;

FIG. 15 is a block diagram illustrating the RCV unit for
implementing the F _PheAcc() instruction;

FIG. 16 is a block diagram illustrating the RCV unit for
implementing the F _IIR() instruction;

FIG. 17 is a block diagram illustrating the RCV unit for
60 implementing the F _SHR() instruction;

FIG. 18 is a block diagram illustrating the RCV unit for
implementing the F _IntAcc() instruction;

FIG. 19 is a block diagram illustrating the RCV unit for
implementing the F _SHRAdd() instruction;

FIG. 20 is a timing diagram illustrating several ADPLL
processing clock options and the current spikes resulting
therefrom;

US 7,809,927 B2
7

FIG. 21 is a timing diagram illustrating an example RF
spectrum generated by a legacy ADPLL;

FIG. 22 is a timing diagram illustrating an example RF
spectrum generated by the software based ADPLL of the
present invention;

FIG. 23 is a flow diagram illustrating the RF spur reduction
method of the present invention;

FIG. 24 is a block diagram illustrating an example ASIP
based implementation of the softwareADPLL of the present
invention; 10

FIG. 25 is a block diagram illustrating an example DSP
based implementation of the softwareADPLL of the present
invention;

FIG. 26 is a block diagram illustrating an example hard
ware state machine based implementation of the software 15

ADPLL of the present invention;
FIG. 27 is a block diagram illustrating a first example

implementation of the state machine used to implement the
software ADPLL of the present invention;

FIG. 28 is a block diagram illustrating a second example 20

implementation of the state machine used to implement the
software ADPLL of the present invention;

FIG. 29 is a diagram illustrating an example superscalar
pipeline architecture;

FIG. 30 is a block diagram illustrating the single instruc- 25

tion multiple data (SIMD) technique;
FIG. 31 is a block diagram illustrating an example data

stream processing model;
FIG. 32 is a block diagram illustrating an example RCV

based data stream processor for implementing the model of 30

FIG. 31;
FIG. 33 is a block diagram illustrating an example two

stage parallel/pipelined RCV architecture of a data stream
processor;

FIG. 34 is a block diagram illustrating an example data 35

stream processing path incorporating forking and merging;
FIG. 35 is a block diagram illustrating an example parallel/

pipelined architecture incorporating forking handling capa
bility;

FIG. 36 is a block diagram illustrating control aspect of an 40

example RCV;
FIG. 37 is a block diagram illustrating control aspect of an

example three-stage pipelined RCV;
FIG. 38 is a block diagram illustrating an example three- 45

stage parallel/pipelined RCV architecture; and
FIG. 39 is a diagram illustrating the data processing within

the three-stage parallel/pipeline processor of FIG. 38.

DETAILED DESCRIPTION OF THE INVENTION

Notation Vsed Throughout

The following notation is used throughout this document.

Term

AC
ACL
ACW
ADC
ADPLL
ALU
AM
ASIC
ASIP
AVI

Definition

Alternating Current
Asynchronous Connectionless Link
Amplitude Control Word
Analog to Digital Converter
All Digital Phase Locked Loop
Arithmetic Logic Unit
Amplitude Modulation
Application Specific Integrated Circuit
Application Specific Instruction-set Processor
Audio Video Interface

50

55

60

65

Term

AWS
BIST
BMP
BPF
CMOS
CPU
CU
CW
DAC
dB
DBB
DC
DCO
DCXO
DPA
DRAC
DRP
DSL
DSP
EDGE
EDR
EEPROM

EPROM
eSCO
FCC
FCW
FIB
FM
FPGA
FSM
GMSK
GPRS
GPS
GSM
HB
HDL
HFP
IfF
IC
IEEE
IIR
JPG
LAN
LB
LDO
LNA
LO
LPF
MAC
MAP
MBOA
MIM
Mod
MOS
MP3
MPG
MUX
NZIF
OFDM
PA
PAN
PC
PCI
PD
PDA
PE
PHE
PLL
PM
PPA
QoS
RAM
RCU
RF
RFBIST
RMS

8

-continued

Definition

Advanced Wireless Services
Built-In Self Test
Windows Bitmap
Band Pass Filter
Complementary Metal Oxide Semiconductor
Central Processing Unit
Control Unit
Continuous Wave
Digital to Analog Converter
Decibel
Digital Baseband
Direct Current
Digitally Controlled Oscillator
Digitally Controlled Crystal Oscillator
Digitally Controlled Power Amplifier
Digital to RF Amplitude Conversion
Digital RF Processor or Digital Radio Processor
Digital Subscriber Line
Digital Signal Processor
Enhanced Data Rates for GSM Evolution
Enhanced Data Rate
Electrically Erasable Programmable Read
Only Memory
Erasable Progranunable Read Only Memory
Extended Synchronous Connection-Oriented
Federal CommlUlications Commission
Frequency Command Word
Focused Ion Beam
Frequency Modulation
Field Programmable Gate Array
Finite State Machine
Gaussian Minimum Shift Keying
General Packet Radio Service
Global Positioning System
Global System for Mobile communications
High Band
Hardware Description Language
Hands Free Protocol
Interface
Integrated Circuit
Institute of Electrical and Electronics Engineers
Infinite Impulse Response
Joint Photographic Experts Group
Local Area Network
Low Band
Low Drop Out
Low Noise Amplifier
Local Oscillator
Low Pass Filter
Media Access Control
Media Access Protocol
Multiband OFDMAlliance
Metal Insulator Metal
Modulo
Metal Oxide Semiconductor
MPEG-l Audio Layer 3
Moving Picture Experts Group
Multiplexer
Near Zero IF
Orthogonal Frequency Division Multiplexing
Power Amplifier
Personal Area Network
Personal Computer
Personal Computer Interconnect
Phase Detector
Personal Digital Assistant
Phase Error
Phase Error
Phase Locked Loop
Phase Modulation
Pre-Power Amplifier
Quality of Service
Random Access Memory
Reconfigurable Calculation Unit
Radio Frequency
RF Built-In Self Test
Root Mean Squared

US 7,809,927 B2

Term

ROM
SAM
SAW
SCO
SEM
SIM
SoC
SRAM
SYNTH
TDC
TDD
TV
UART
UGS
UMTS
USB
UWB
VCO
WCDMA
WiFi
WiMAX
WiMedia
WLAN
WMA
WMAN
WMV
WPAN
XOR
ZIF

9

-continued

Definition

Read Only Memory
Sigma-Delta Amplitnde Modulation
Surface Acoustic Wave
Synchronous Connection-Oriented
Spectral Emission Mask
Subscriber Identity Module
System on Chip
Static Read Only Memory
Synthesizer
Time to Digital Converter
Time Division Duplex
Television
Universal Asynchronous Transmitter/Receiver
Unsolicited Grant Services
Universal Mobile Telecommunications System
Universal Serial Bus
Ultra Wideband
Voltage Controlled Oscillator
Wide band Code Division Multiple Access
Wireless Fidelity
Worldwide Interoperability for Microwave Access
Radio platform for UWB
Wireless Local Area Network
Windows Media Audio
Wireless Metropolitan Area Network
Windows Media Video
Wireless Personal Area Network
Exclusive Or
Zero IF

DETAILED DESCRIPTION OF THE INVENTION

The present invention is a novel and useful apparatus for
and method of software based phase locked loop (PLL). The
processor-based (or alternatively software-based or highly
reconfigurable) PLL (i.e. all digital phase-locked loop or
ADPLL) architecture can be used for RF frequency synthesis
in radio transceivers and other applications. The software
based phase locked loop of the present invention incorporates
a reconfigurable calculation unit (RCU) that is programmed
to sequentially perform all the atomic (or substantially atomic
wherein the level of 'atomicity' is conveniently determined
during architectural optimization) operations of a phase
locked loop or of any other desired task. The RCU is a key
component in an application specific instruction-set proces
sor (ASIP). The ASIP includes an instruction set that com
prises instructions optimized to perform the individual
atomic operations of a phase locked loop. The PLL operations
perform data stream processing of various PLL signals, such
as frequency command word, frequency error, phase error,
tuning word, etc.

An example application is provided of the software based
phase locked loop incorporated in a single chip radio, e.g.,
Bluetooth, GSM, etc., that integrates the RF circuitry with the
digital base band (DBB) circuitry on the same die.

Although the software based phase locked loop mecha
nism is applicable to numerous wireless communication stan
dards and can be incorporated in numerous types of wireless

10
the invention is not limited to use with a specific modulation
scheme but is applicable to numerous modulation schemes.

Note that throughout this document, the tenn communica
tions device is defined as any apparatus or mechanism
adapted to transmit, receive or transmit and receive data
through a medium. The tenn communications transceiver is
defined as any apparatus or mechanism adapted to transmit
and receive data through a medium. The communications
device or communications transceiver may be adapted to

10 communicate over any suitable medium, including wireless
or wired media. Examples of wireless media include RF,
infrared, optical, microwave, UWB, Bluetooth, WiMAX,
WiMedia, WiFi, or any other broadband medium, etc.
Examples of wired media include twisted pair, coaxial, opti-

15 cal fiber, any wired interface (e.g., USB, Firewire, Ethernet,
etc.). The term Ethernet network is defined as a network
compatible with any of the IEEE 802.3 Ethernet standards,
including but not limited to 10 Base-T, 100Base-T or
1 OOOBase-T over shielded or unshielded twisted pair wiring.

20 The tenns communications channel, link and cable are used
interchangeably. The notation DRP is intended to denote
either a Digital RF Processor or Digital Radio Processor.
References to a Digital RF Processor infer a reference to a

25

Digital Radio Processor and vice versa.
The term multimedia player or device is defined as any

apparatus having a display screen and user input means that is
capable of playing audio (e.g., MP3, WMA, etc.), video (AYI,
MPG, WMV, etc.) and/or pictures (lPG, BMP, etc.). The user
input means is typically fonned of one or more manually

30 operated switches, buttons, wheels or other user input means.
Examples of multimedia devices include pocket sized per
sonal digital assistants (PDAs), personal media player/re
corders, cellular telephones, handheld devices, and the like.

Some portions of the detailed descriptions which follow
35 are presented in terms of procedures, logic blocks, process

ing, steps, and other symbolic representations of operations
on data bits within a computer memory. These descriptions
and representations are the means used by those skilled in the
data processing arts to most effectively convey the substance

40 of their work to others skilled in the art. A procedure, logic
block, process, etc., is generally conceived to be a self-con
sistent sequence of steps or instructions leading to a desired
result. The steps require physical manipulations of physical
quantities. Usually, though not necessarily, these quantities

45 take the form of electrical or magnetic signals capable of
being stored, transferred, combined, compared and otherwise
manipulated in a computer system. It has proven convenient
at times, principally for reasons of common usage, to refer to
these signals as bits, bytes, words, values, elements, symbols,

50 characters, terms, numbers, or the like.
It should be born in mind that all of the above and similar

tenns are to be associated with the appropriate physical quan
tities they represent and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as

55 apparent from the following discussions, it is appreciated that
throughout the present invention, discussions utilizing tenns
such as 'processing,' 'computing,' 'calculating,' 'determin
ing,' 'displaying' or the like, refer to the action and processes

or wired communication devices such a multimedia player,
mobile station, cellular phone, PDA, DSL modem, WPAN 60

device, etc., it is described in the context of a digital RF
processor (DRP) based transceiver that may be adapted to
comply with a particular wireless communications standard
such as GSM, Bluetooth, EDGE, WCDMA, WLAN, WiMax,
etc. It is appreciated, however, that the invention is not limited 65

to use with any particular communication standard and may

of a computer system, or similar electronic computing device,
that manipulates and transforms data represented as physical
(electronic) quantities within the computer system's registers
and memories into other data similarly represented as physi
cal quantities within the computer system memories or reg
isters or other such infonnation storage, transmission or dis
play devices.

The invention can take the form of an entirely hardware
embodiment, an entirely general-purpose software embodi-be used in optical, wired and wireless applications. Further,

US 7,809,927 B2
11

ment or an embodiment containing a combination of hard
ware and software elements. In one embodiment, a portion of
the mechanism of the invention is implemented in software,
which includes but is not limited to firmware, resident soft
ware, object code, assembly code, microcode, etc.

Furthermore, the invention can take the form of a computer
program product accessible from a computer-usable or com
puter-readable medium providing program code for use by or
in connection with a computer or any instruction execution
system. For the purposes of this description, a computer- 10

usable or computer readable medium is any apparatus that can
contain, store, communicate, propagate, or transport the pro
gram for use by or in connection with the instruction execu
tion system, apparatus, or device, e.g., floppy disks, remov
able hard drives, computer files comprising source code or 15

object code, flash semiconductor memory (USB flash drives,
etc.), ROM, EPROM, or other semiconductor memory
devices.

12
A key component is the digitally controlled oscillator

(DCO) 56, which avoids any analog tuning controls. A digi
tally-controlled crystal oscillator (DCXO) generates a high
quality base station-synchronized frequency reference such
that the transmitted carrier frequencies and the received sym
bol rates are accurate to within 0.1 ppm. Fine frequency
resolution for both DCO and DCXO is achieved through
high-speed ~ll dithering of their varactors. Digital logic built
around the DCO realizes an all-digital PLL (ADPLL) that is
used as a local oscillator for both the transmitter and receiver.
The polar transmitter architecture utilizes the wideband direct
frequency modulation capability of the ADPLL and a digi
tally controlled power amplifier (DPA) 48 for the amplitude
modulation. The D PA operates in near-class-E mode and uses
an array of nMOS transistor switches to regulate the RF
amplitude. It is followed by a matching network and an exter
nal front-end module 46, which comprises a power amplifier
(PA), a transmit/receive switch for the common antenna 44

Single Chip Radio 20 and RX surface acoustic wave (SAW) filters. Fine amplitude
resolution is achieved through high-speed ~ll dithering of the
DPA nMOS transistors. A block diagram illustrating a single chip radio incorpo

rating a software based ADPLL mechanism of the present
invention is shown in FIG. 4. For illustration purposes only,
the transmitter, as shown, is adapted for the GSMIEDGE/ 25

WCDMA cellular standards. It is appreciated, however, that
one skilled in the communication arts can adapt the transmit-
ter and receiver illustrated herein to other modulations and
communication standards as well without departing from the
spirit and scope of the present invention.

The radio, generally referenced 30, comprises a radio inte
grated circuit 31 coupled to a crystal 38, RF front end module
46 coupled to an antenna 44, and battery management circuit
32 coupled to battery 68. The radio chip 31 comprises a script
processor 60, digital baseband (DBB) processor 61, memory
62 (e.g., static RAM), TX block 42, RX block 58, digitally
controlled crystal oscillator (DCXO) 50, slicer 51, power
management unit 34 and RF built-in self test (BIST) 36. The
TX block comprises high speed and low speed digital logic
block 40 including ~ll modulators (not shown), phase domain
calculator (ASIP) 52 for performing data stream processing
of the PLL signals, digitally controlled oscillator (DCO) 56,
accumulator 59, sampler 69 and digitally controlled power
amplifier (DPA) 48. The RX block comprises a low noise
transconductance amplifier 63, current sampler 64, discrete
time processing block 65, analog to digital converter (ADC)
66 and digital logic block 67. Note that the data stream pro
cessing is not limited to the phase domain calculations of the
PLL, but could be applied to the transmit modulation opera
tion, which could be performed in the script processor 60 or
internally in the transmitter 42. The data stream processing
principles could also be applied to the receive signals in the
RX digital logic block 67.

The receiver 58 employs a discrete-time architecture in
which the RF signal is directly sampled at the Nyquist rate of
the RF carrier and processed using analog and digital signal
processing techniques. The transceiver is integrated with a
script processor 60, dedicated digital base band processor 61
(i.e. ARM family processor and/or DSP) and SRAM memory
62. The script processor handles various TX and RX calibra-

30 tion, compensation, sequencing and lower-rate data path
tasks and encapsulates the transceiver complexity in order to
present a much simpler software programming model.

The frequency reference (FREF) is generated on-chip by a
35 26 MHz (or any other desired frequency, such as 13 or 38.4

MHz) digitally controlled crystal oscillator (DCXO) 50,
which provides negative resistance to sustain the oscillations.
The output of the DCXO is coupled to slicer 51. The output of
the slicer is input to the phase domain calculator which com-

40 prises a software based PLL in accordance with the invention
and described in more detail infra.

An integrated power management (PM) system 34 is con
nected to an external battery management circuit 32 that
conditions and stabilizes the supply voltage. The PM com-

45 prises multiple low drop out (LDO) regulators that provide
internal supply voltages and also isolate supply noise
between circuits, especially protecting the DCO. The RF
built-in self-test (RFBIST) 36 performs autonomous phase
noise and modulation distortion testing, various loopback

50 configurations for bit-error rate measurements and imple
ments the DPA calibration and BIST mechanism. The trans-

The Digital RF Processor (DRP) principles presented
herein have been used to develop three generations of a Digi - 55

tal RF Processor (DRP): single-chip Bluetooth, GSM and
GSMIEDGE radios realized in 130 nm, 90 nm and 65 nm
digital CMOS process technologies, respectively. This archi
tecture is also used as the foundation for a UMTS single-chip
radio manufactured using a 45 nm CMOS process. The com- 60

mon architecture is highlighted with features added specific

ceiver is integrated with the digital baseband, SRAM memory
in a complete system-on-chip (SoC) solution. Almost all the
clocks on this SoC are derived from and are synchronous to
the RF oscillator clock. This helps to reduce susceptibility to
the noise generated through clocking of the massive digital
logic.

The transmitter comprises a polar architecture in which the
amplitude and phase/frequency modulations are imple
mented in separate paths. Transmitted symbols generated in
the digital baseband (DBB) processor are first pulse-shape
filtered in the Cartesian coordinate system. The filtered in
phase (1) and quadrature (Q) samples are then converted
through a CORDIC algorithm into amplitude and phase
samples of the polar coordinate system. The phase is then
differentiated to obtain frequency deviation. The polar signals
are subsequently conditioned through signal processing to

to the cellular radio. The all digital phase locked loop (AD
PLL) based transmitter employs a polar architecture with all
digital phase/frequency and amplitude modulation paths. The
receiver employs a discrete-time architecture in which the RF 65

signal is directly sampled and processed using analog and
digital signal processing techniques.

US 7,809,927 B2
13

sufficiently increase the sampling rate in order to reduce the
quantization noise density and lessen the effects of the modu
lating spectrum replicas.

14
Ultra Wideband (UWB) radio and interface 83 and antenna
81. The UWB radio typically comprises an MBOA-UWB
based radio.

Amore detailed description of the operation oftheADPLL
can be found in u.s. Patent Publication No. 2006/ 5

0033582Al, published Feb. 16, 2006, to Staszewski et aI.,
entitled "Gain Calibration of a Digital Controlled Oscillator,"
u.s. Patent Publication No. 2006/003871OAl, published
Feb. 23, 2006, Staszewski et aI., entitled "Hybrid Polar/Car
tesian Digital Modulator" and u.s. Pat. No. 6,809,598, to 10

Staszewski et aI., entitled "Hybrid Of Predictive And Closed
Loop Phase-Domain Digital PLLArchitecture," all of which
are incorporated herein by reference in their entirety.

Portable power is provided by the battery 124 coupled to
battery management circuitry 122. External power is pro
vided via USB power 118 or an AC/DC adapter 120 con
nected to the battery management circuitry which is operative
to manage the charging and discharging of the battery 124.

Example ADPLL Polar Transmitter

A block diagram illustrating an example ADPLL-based
polar transmitter for wireless applications is shown in FIG. 6.
The exampleADPLL shown is used as the basis for a software

Mobile Device/Cellular Phone/PDA System

A simplified block diagram illustrating an example mobile
communication device incorporating the software based
ADPLL mechanism of the present invention is shown in FIG.
5. The communication device may comprise any suitable
wired or wireless device such as a multimedia player, mobile
station, mobile device, cellular phone, PDA, wireless per
sonal area network (WPAN) device, Bluetooth EDR device,
etc. For illustration purposes only, the communication device
is shown as a cellular phone or smart phone. Note that this
example is not intended to limit the scope of the invention as
the software basedADPLL mechanism of the present inven
tion can be implemented in a wide variety of wireless and
wired communication devices.

The cellular phone, generally referenced 70, comprises a
baseband processor or CPU 71 having analog and digital
portions. The basic cellular link is provided by the RF trans
ceiver 94 and related one or more antennas 96, 98. A plurality

15 based ADPLL mechanism described in more detail infra. A
more detailed description of the operation of the ADPLL can
be found in U.S. Patent Publication No. 2006/0033582Al,
published Feb. 16,2006, to Staszewski et aI., entitled "Gain
Calibration of a Digital Controlled Oscillator," U.S. Patent

20 Publication No. 2006/003871OAl, published Feb. 23, 2006,
Staszewski et aI., entitled "Hybrid Polar/Cartesian Digital
Modulator" and U.S. Pat. No. 6,809,598, to Staszewski et aI.,
entitled "Hybrid Of Predictive And Closed-Loop Phase-Do
main Digital PLLArchitecture," all of which are incorporated

25 herein by reference in their entirety.
For illustration purposes only, the transmitter, as shown, is

adapted for the GSM/EDGE/WCDMA cellular standards. It
is appreciated, however, that one skilled in the communica
tion arts can adapt the transmitter illustrated herein to other

30 modulations and communication standards as well without
departing from the spirit and scope of the present invention.

The transmitter, generally referenced 130, is well-suited

of antennas is used to provide antenna diversity which yields
improved radio performance. The cell phone also comprises 35

internal RAM and ROM memory 110, Flash memory 112 and
external memory 114.

for a deep-submicron CMOS implementation. The transmit
ter comprises a complex pulse shaping filter 168, amplitude
modulation (AM) block 169 andADPLL 132. The circuit 130
is operative to perform complex modulation in the polar
domain in addition to the generation of the local oscillator
(LO) signal for the receiver. All clocks in the system are
derived directly from this source. Note that the transmitter is
constructed using digital techniques that exploit the high
speed and high density of the advanced CMOS, while avoid-

In accordance with the invention, the RF transceiver 94
comprises the software reconfigurableADPLL of the present
invention. In operation, the software reconfigurable ADPLL 40

mechanism may be implemented as dedicated hardware, as
software executed as a task on the baseband processor 71 or
dedicated processor or a combination of hardware and soft
ware. Implemented as a software task, the program code
operative to implement the software reconfigurable ADPLL 45

mechanism of the present invention is stored in one or more
memories 110, 112, 114 or in on-chip volatile or non-volatile
memory.

ing problems related to voltage headroom. The ADPLL cir
cuit replaces a conventional RF synthesizer architecture
(based on a voltage-controlled oscillator (VCO) and a phase/
frequency detector and charge-pump combination), with a
digitally controlled oscillator (DCO) 148 and a time-to-digi-
tal converter (TDC) 162. All inputs and outputs are digital and
some even at multi-GHz frequency.

Several user interface devices include microphone 84,
speaker 82 and associated audio codec 80, a keypad for enter
ing dialing digits 86, vibrator 88 for alerting a user, camera
and related circuitry 100, a TV tuner 102 and associated
antenna 104, display 106 and associated display controller
108 and GPS receiver 90 and associated antenna 92.

A USB interface connection 78 provides a serial link to a
user's PC or other device. An FM receiver 72 and antenna 74
provide the user the ability to listen to FM broadcasts. WLAN
radio and interface 76 and antenna 77 provide wireless con
nectivity when in a hot spot or within the range of an ad hoc,
infrastructure or mesh based wireless LAN network. A Blue
tooth EDR radio and interface 73 and antenna 75 provide
Bluetooth wireless connectivity when within the range of a
Bluetooth wireless network. Further, the communication
device 70 may also comprise a WiMAX radio and interface
123 and antenna 125. SIM card 116 provides the interface to
a user's SIM card for storing user data such as address book
entries, etc. The communication device 70 also comprises an

The core of the ADPLL is a digitally controlled oscillator
50 (DCO) 148 adapted to generate the RF oscillator clock CKY.

The oscillator core (not shown) operates at a multiple of the
1.6-2.0 GHz (e.g., 4) high band frequency or at a multiple of
the 0.8-1.0 GHz low band frequency (e.g., 8). Note that typi
cally, the multiple is a power-of-two but any other suitable

55 integer or even fractional frequency relationship may be
advantageous. The output of the DCO is then divided for
precise generation of RX quadrature signals, and for use as
the transmitter's carrier frequency. The single DCO is shared
between transmitter and receiver and is used for both the high

60 frequency bands (HB) and the low frequency bands (LB). In
addition to the integer control of the DCO, at least 3-bits of the
minimal varactor size used are dedicated for ~ll. dithering in
order to improve frequency resolution. The DCO comprises a
plurality ofvaractor banks, which may be realized as n-poly/

65 n-well inversion type MOS capacitor (MOSCAP) devices or
Metal Insulator Metal (MIM) devices that operate in the flat
regions of their C-V curves to assist digital control. The

US 7,809,927 B2
15

output of the DCO is a modulated digital signal at f RF" This
signal is input to the pre-power amplifier (PPA) 152. It is also
input to the RF low band pre-power amplifier 154 after divide
by two via divider 150.

16
The IIR filter is a cascade of four single stage filters, each

satisfying the following equation:

Yfk]~(I-A)'yfk-l]+A'xfkJ (6)

The expected variable frequency f vis related to the refer- 5

ence frequency f R by the frequency command word (FCW).
wherein

x[k] is the current input;
y[k] is the current output;
k is the time index;

FCW[k] " E(fy[k])
JR

(1)

The FCW is time variant and is allowed to change with every
cycle T R= lIf R of the frequency reference clock. With W F=24

the word length of the fractional part of FCW, the ADPLL
provides fine frequency control with 1.5 Hz accuracy, accord
ingto:

(2)

The number of integer bits W I =8 has been chosen to fully
cover the GSMIEDGE and partial WCDMA band frequency
range of fv=I,600-2,000 MHz with an arbitrary reference
frequency f R~8 MHz.

The ADPLL operates in a digitally-synchronous fixed
point phase domain as follows: The variable phase accumu
lator 156 determines the variable phase Rv/:i] by counting the
number of rising clock transitions of the DCO oscillator clock
CKV as expressed below.

;

Ry[i] = ~1
(3)

1=0

10
A is the configurable coefficient;

The 4-pole IIR loop filter attenuates the reference and TDC
quantization noise with an 80 dB/dec slope, primarily to meet
the GSMIEDGE spectral mask requirements at 400 kHz off
set. The filtered and scaled phase error samples are then

15 multiplied by the DCO gain KDCO normalization factor fRI
KDCQ via multiplier 146, where f R is the reference frequency
and KDCO is the DCO gain estimate, to make the loop char
acteristics and modulation independent from KDCO' The
modulating data is injected into two points oftheADPLL for

20 direct frequency modulation, via adders 136 and 144. A hit
less gear-shifting mechanism for the dynamic loop band
width control serves to reduce the settling time. It changes the
loop attenuator u several times during the frequency locking
while adding the (u/u2-1)<pl dc offset to the phase error,

25 where indices 1 and 2 denote before and after the event,
respectively. Note that <Pl=<P2' since the phase is to be con
tinuous.

The frequency reference FREF is input to the retimer 166
and provides the clock for the TDC 162. The FREF input is

30 resampled by the RF oscillator clock CKV via retimer block
166 which may comprise a flip flop or register clocked by the
reference frequency FREF. The resulting retimed clock
(CKR) is distributed and used throughout the system. This
ensures that the massive digital logic is clocked after the quiet

35 interval of the phase error detection by the TDC. Note that in
the example embodiment described herein, the ADPLL is a
discrete-time sampled system implemented with all digital
components connected with all digital signals.

40 Software Based ADPLL Architecture

A simplified block diagram illustrating an embodiment of
the software based ADPLL incorporating a processor based
phase domain calculator is shown in FIG. 7. The ADPLL
circuit, generally referenced 180, comprises a phase domain
calculator 184, DCO 186, integer feedback block 188, frac
tional feedback block 189 and programmable fractional-N
clock divider 182.

The index i indicates the DCO edge activity. The variable
phase Rv/:i] is sampled via sampler 158 to yield sampled
FREF variable phase Rv/:k], where k is the index of the FREF
edge activity. The sampled FREF variable phase Rv/:k] is 45

fixed-point concatenated with the normalized time-to-digital
converter (TDC) 162 output E[k]. The TDC measures and
quantizes the time differences between the frequency refer
ence FREF and the DCO clock edges. The sampled differen
tiated (via block 160) variable phase is subtracted from the
frequency command word (FCW) by the digital frequency
detector 138. The frequency error fE[k] samples

In operation, the phase domain calculator replaces the con-
50 ventional ADPLL circuit with a software based ADPLL. As

with the conventional ADPLL, it is operative to generate the
DLO update that is input to the DCO 186 which in tum
generates the RF output frequency clock CKY. The phase
domain calculator receives the FCW commands, variable

f Efk]~FCW - [(R vfkJ-Efk])-(R vfk-l]-E[k-l])] (4)

are accumulated via the frequency error accumulator 140 to 55

create the phase error <PE[k] samples

phase information (i.e. integer and fractional feedback) and
the reference frequency clock FREF, which typically ranges
between 13 and 52 MHz. The processing clock output of the
programmable clock divider 182 runs at a frequency signifi
cantly higher than FREF, such as in the range 200 to 600 k

'!>E[k] = ~ JE[k]
(5)

1=0

which are then filtered by a fourth order IIR loop filter 142 and
scaled by a proportional loop attenuator u. A parallel feed
with coefficient p adds an integrated term to create type-II
loop characteristics which suppress the DCO flicker noise.

60 MHz, for example.
In accordance with the invention, the phase domain calcu

lator performs the ADPLL operations serially rather than in
parallel. In order the complete the ADPLL computation
within reference clock cycle, the much faster processor clock

65 is used to clock the phase domain calculator internal circuitry.
The solution uses a reconfigurable computational unit

(RCV) or ALV (described infra) that is time shared for most

US 7,809,927 B2
17

or all computations within the ADPLL. The RCU and its
related configuration control logic (constituting a special pur
pose microcomputer) replaces the dedicated and distributed
random logic within a conventional ADPLL. The RCU is
controlled via microcode stored in on-chip memory such as
random access memory (RAM), read only memory (ROM),
Flash memory, etc. Since the computational unit is time
shared among most operations, it is operated at a much higher
clock rate than the conventional ADPLL which performs all
calculations in parallel using dedicated hardware circuits. 10

The RCU circuitry is optimized to perform all the required
ADPLL atomic computations within one reference clock
cycle.

A block diagram illustrating an example embodiment of
the phase domain calculator of the present invention in more 15

detail is shown in FIG. 8. The phase domain calculator, gen
erally referenced 190, comprises an ALU (or RCU) 202,
instruction and data memory 192, register file 194, sequencer
196, latches 208, 206, multiplexers 209, 198, 200, 204.

The instructions for implementing the ADPLL operation 20

are stored in the instruction memory. Instructions are input to
the sequencer which performs the instruction decoding and
generates the appropriate signals to execute each instruction.
The register file stores intermediate values calculated by the
ALU. 25

A timing diagram illustrating the processing clock and
reference frequency timing is shown in FI G. 9. As shown, the
processing clock 210, used to clock the memory, sequencer
and register file, is at a significantly higher clock rate than the
reference clock FREF 212. This is required in order the com- 30

plete an operation cycle oftheADPLL within a single refer
ence clock period.

A block diagram illustrating an instruction view of the
software basedADPLL architecture of the present invention
is shown in FIG. 10. The circuit, generally referenced 220, 35

comprises a phase calculation unit 222, gain normalization
238, DCO 240, gain calibration 242, accumulator 244 and
variable phase sampler 246. The phase calculation unit shows
an instruction view oftheADPLL architecture performed in
software. In particular, the phase calculation unit 222 com- 40

prises a phase detector 224, frequency error accumulator 226,
IIR loop filter 228, a proportional gain multiplier 230, IIR
filter 232, adder 234, integral gain multiplier 236, offset phase
error adder 248, phase error accumulator 250 and integral or

18
instruction. Individual instructions are provided for each
atomic operation in the ADPLL (or any other task).

The computation elements within the phase calculation
block 222 are the elements implemented and executed as
software instructions. The computations within block 222 can
be expressed as pseudo code as shown in the following List
ing 1.

Listing 1: Sequential pseudo-code for ADPLL phase computation

L1: y16 ~ y15 - Sl
Sl ~y15
y1 ~FCW -y16
y2 ~y2 +y1
y3 ~ IIR (aI, y2, y3)

y4 ~ IIR (a2, y3, y4)
y5 ~ IIR (a3, y4, y5)
y6 ~ IIR (a4, y5, y6)
y7 ~ SHL (y6, alpha)
yll ~ IIR (gs, y7, yll)
y9 ~y6 - PhE
yIO ~ yIO + y9
y12 ~ SHL (yIO, rho)
y13 ~ yll + y12
y14 ~ y13 * gain
jump L1

liS 1 is the store element
II delay

/ / accumulation
I I 4th order infinite impulse response(IIR)
filter

II shift operation

II implies accumulation

/ / operates in a continuous loop

As described supra, in prior art ADPLL circuits, all
ADPLL phase computations are implemented using dedi
cated hardware (i.e. a hardwired design), which limits the
ability to adjust the AD PLL algorithm. In accordance with the
software based architecture of the present invention, these
ADPLL functions are integrated within a processor using
shared hardware thereby providing significant flexibility to
the ADPLL algorithm.

Processor Based ADPLL Architecture

A block diagram illustrating an example processor based
software ADPLL architecture of the present invention is
shown in FIG. 11. The ADPLL circuit, generally referenced
260, comprises an application specific instruction-set proces
sor (ASIP) 262, which is used to realize data stream process
ing of the present invention, DCO 286, accumulator 288 and
variable phase sampler 289. The ASIP 262 comprises instruc
tion memory 264, fetch block 266, decode block 268, data bus
278, RCU 270, S-unit 272, L-unit 274, A-unit 276, register
file 280, data memory 282 and interface 284.

All ADPLL computations as delineated in Listing 1 above

p gain multiplier 252. Both proportional and integral multi- 45

pliers preferably use power-of-two arithmetic so that their
respective multipliers could be implemented as bit-shift
operators. For non-power-of-two arithmetic, full multipliers
can be used with the consequent increase in circuit cost and
complexity. 50 are incorporated into a so-called Application Specific Instruc

tion-set Processor (ASIP) 262. It is appreciated that a general
purpose processor may also be used to perform the ADPLL
operation. An ASIP, however, is far more efficient due to the
instruction set being adapted to perform a small but dedicated

TheADPLL circuit shown is anADPLL architecture that is
commonly used in wireless applications for RF frequency
generation. In this digital architecture, the traditional YCO is
replaced with a digitally controlled oscillator (DCO) and the
oscillating frequency of the DCO is controlled by a frequency
command word (FCW) instead of the reference clock, as
described in detail supra. The phase detecting and filtering
parts are all digital with intensive digital signal processing
involved as highlighted.

In operation, the ADPLL operation is partitioned into a
plurality of atomic operations, wherein each atomic operation
performs a complete processing step within theADPLL. For
example, an adding operation representing adder 224 com
prises one atomic operation. Similarly, accumulation block
226 and each of four elemental first-order IIR operations in
IIR filter block 228 also comprise a single atomic operation
each. Each atomic operation is performed by a separate

55 set of atomic (or substantially atomic) operations.
In operation, the ASIP processor stores the ADPLL soft

ware instructions in the instruction memory 264. The instruc
tions are then fetched from the instruction memory via fetch
block 266 and fed into the decoding block 268. All required

60 control signals are generated through the decoding block to
control the operation of the various computational units,
including the A-Unit 276 for performing arithmetic opera
tions, e.g., addition, subtraction, etc., L-Unit274 for perform
ing logic operations, e.g., AND, OR, XOR, etc. and S-Unit

65 272 for performing data storage and movement operations. A
reconfigurable calculation unit (RCU) 270 is constructed to
provide application specific instructions for theADPLL. The

US 7,809,927 B2
19

RCV, for example, is operative to implement the I-stage IIR
filtering operation within a single instruction. It is noted that
the application driven customized instruction set is what dif
ferentiates an ASIP from a general purpose processor which
performs ADPLL computations much less efficiently to the 5

extent that it may not even be able to complete the necessary
computations within the reference clock period.

The ASIP processor is operative to read the FCW and
variable phase (Ph V) inputs, sequentially perform all the
computations (i.e. atomic operations) required for the 10

ADPLL as presented in Listing I within one system reference
clock cycle and send the resulting tuning word DCO_TUNE
(i.e. DLO update) to the DCO which in turn uses the tuning
word to adjust its output frequency. It is important to note that
all the computations are perfonned via the programmed soft- 15

ware stored in instruction memory of the ASIP. Note also that
the majority of the computations are perfonned by the RCV,
which is designed specifically to implement the atomic opera

20
replaced with data lines Rb and Rd for reading and writing to
an external memory such as the register file or data memory.

Thus, for application to an ADPLL, the multiplication
operation in the IIR filter is simplified with a shifting opera
tion. The final RCV in 12D is a pure computation unit without
any storage element. To map the IIR equation below

Yk =(l-a)'Yk-l+a,xk

a
H(Z) = 1 _ (l _ a) * Z 1

to the RCV unit, the following applies:
X k maps to RCV input Ra;.
Yk-l maps to RCV input Rb;
y k maps to RCV output Rd;

(7)

The RCV unit is made further configurable to accommo-tions of the targetedADPLL application.

Reconfigurable Calculation Vnit (RCV)

The structure of the RCV will now be described in more
detail. As described above, all the computations in Listing I
are described in tenns of atomic arithmetic operations, such
as additions, subtractions, shifting, multiplications, etc. and
as more complicated operations, such as IIR filtering. A prior
art hardwired implementation simply instantiates the number

20 date all the main computations for the AD PLL in an efficient
mauner. A block diagram illustrating an example RCV unit
322 for implementing the ADPLL circuit way is shown in
FIG. 13. The RCV 322 and related circuitry, generally refer
enced 320, comprises a plurality of elements as follows: two

of hardware operators equal to the number of atomic opera
tions required by the ADPLL algorithm. This, however, has
its drawbacks as discussed supra.

25 data inputs (Ra, Rb), two data outputs (Rd_st, Rd), three
atomic computation units (first addition/subtraction 324,
shifter 326, second addition/subtraction 328), two latch/stor
age elements (input latch S_d 336 and output latch Rd 330),
local registers for data storage, e.g., shift amount a, FCW 340,

30 PhE 342, multiplexers for data steering 332, 334, 338 and
control/configure signals.

The ASIP based design of the present invention utilizes one In operation, the RCV takes input data Ra and goes through
the first addition/subtraction followed by a shifting operation
followed by a second addition/subtraction. The data is then

or more reconfigurable computational units that are used to
perform all arithmetic operations implementing the ADPLL
algorithm. This computational unit is "recycled" sequentially
among all the arithmetic operations within a single cycle of
theADPLL system clock. The internal state oftheADPLL is
stored between clock cycles in internal storage elements (i.e.
register file, data memory, etc.). An important aspect of the
RCV design is the greatly increased application efficiency
along with a maximization of resource reuse.

35 sent to the outside register file Rd_st or latched (Rd) for the
next computation. An input latching element (S_d) is
included as part of a differentiation operation. All the com
putation units including the data paths inside the RCV are
configurable with the control/configure signals generated by

40 the ASIP decoding block.

Detailed knowledge of the task to be implemented (e.g.,
ADPLL algorithm) is important in creating the functionality
of the computational unit in order to optimize its complexity
and system throughput requirements. In the case of an 45

ADPLL algorithm, all the elemental ADPLL computations
(except for IIR filtering) are either add/subtract or power-of
two multiply operation. Therefore, the invention provides for
a single IIR computation that has been optimized to be rep
resented as a single operation in the computational unit. 50

FIGS. 12A, 12B, 12C and 12D illustrate the mapping pro
cess and the resulting configuration of the RCV. In particular,
FIG. 12A is a diagram illustrating the output and transfer
function equations for the infinite impulse response (IIR)
filter portion of the ADPLL. FIG. 12B is an equivalent block 55

diagram implementing the output equation shown in FIG.
12A. The circuit, generally referenced 290, comprises multi
pliers 292, 298, adders 294, 299 and unit delay 296.

FIG. 12C is an equivalent block diagram implementing the
output equation shown in FIG. 12A whereby the multiplica- 60

tion operations have been replaced with shift operations. The
circuit, generally referenced 300, comprises shift operations
302,309, adders 304, 308 and unit delay 306. FIG. 12D is a
diagram illustrating the resultant reconfigurable calculation
unit (RCV) implementing the output equation shown in FIG. 65

12A. The RCV, generally referenced 310, comprises shifter
312, 318 and adders 314, 316. The unit delay element is

Table I below shows the mapping of the customized
instruction set provided by the RCV and their corresponding
targeted computations in the ADPLL.

TABLE I

Customized instructions and their
corresponding computations in the ADPLL

Computations inADPLL

L1: y16 = y15 - S_d
S_d =y15
yl =FCW -y16
y2 =y2 +yl
y3 = IIR (aI, y2, y3)
y4 = IIR (a2, y3, y4)
y5 = IIR (a3, y4, y5)
y6 = IIR (a4, y5, y6)
y7 = SHR (y6, alpha)
yll = IIR(gs, y7, yll)
y9 =y6 - PhE
yIO = yIO + y9
y12 = SHR (yIO, rho)
y13 = yll + y12
y14 = y13 * gain
jump L1

Customized Instructions

F _Diff(y15, y16)

F _PheAee (yl, y2)

F _IIRI (y2, y3)
F _IIR2 (y3, y4)
F _IIR3 (y4, y5)
F _IIR4 (y5, y6)
F _SHR (y6, y7)
F _IIRgs (y7, yll)
F _IntAee (y6, yIO)

F _SHRAdd (yIO, yll, y13)

Detailed descriptions for most of the instructions in Table
I above are provided below. For each instruction, a corre
sponding figure is provided illustrating the data paths and

US 7,809,927 B2
21

computation elements in the RCV used in executing the
instruction. Elements in each of the figures described below
operate as described above in connection with FIG. 13. Fur
ther, the bold lines or arrows in each figure highlight the data
path for that particular instruction.

F _Diff Instruction

F _Diff(y15, y16):
y16=y15-S_d
S_d=y15

A block diagram illustrating the RCV unit 350 for imple
menting the F _Diff() instruction is shown in FIG. 14. The

10

22
operation. It takes the input y16, performs an accumulation in
the first addition/subtraction unit and then bypasses the
shifter. A subtraction is then performed using local register
PhE.

F _SHRAdd Instruction

F _SHRAdd(y10, yll, y13):
y12=SHR(y10, rho)
y13=yll +y12

A block diagram illustrating the RCV unit 360 for imple
menting the F _SHRAdd() instruction is shown in FIG. 19.
This instruction implements a shifting operation followed by
an addition operation. The shift amount RHO is set locally in F _Diff instruction implements a differentiation operation.

The bold arrow lines highlight the data path in the RCV. Input
y15 is received and the first addition/subtraction unit is
bypassed (e.g., the second or negating input to the first adder

15 the RCV. Input y10 is received, the first addition/subtraction
unit is bypassed and then a shifting operation is performed.
The shifter output then undergoes an addition operation via
the second addition/subtraction unit. is set to zero). The shifting unit is also bypassed and a sub

traction (via the second addition/subtraction unit) is per
formed with local register S_d. The result y16 is output via 20

Rd_st. The instruction also updates S_d with input y15 via
register latch S_d.

F _Gain Instruction

The F _ Gain() instruction performs a multiplication by a gain
value. In the case where the gain value is a power of two, the
shift operation is used to perform this instruction. For non
power of two gain values, a multiplier in the RCV is used (not

F _PheAcc Instruction

F _PheAcc(y16, y2):
y1=FCW-y16
y2=y2+y1;

25 shown).

A block diagram illustrating the RCV unit 352 for imple
menting the F _PheAcc() instruction is shown in FIG. 15.
This instruction implements a subtraction plus an accumula- 30

tion operation. It takes the input y16, performs the accumu
lation operation using the first addition/subtraction unit,
bypasses any shifting (i.e. the shifter is configured for pass
through operation). A subtraction operation with local regis-
ter FCW is then performed. The accumulation is done on the 35

Rd register latch.

F _IIR Instruction

In addition to the instructions described in detail herein-
above, the RCV comprises other customized instructions that
are needed for general purpose applications, such as for set
ting RCV local register values, etc.

RF Spur Reduction

The effects of the software based ADPLL on RF spur
reduction will now be described. As described supra, in prior
art single-chip radios, the phase domain calculation portion of
the ADPLL signal processing is traditionally implemented
using dedicated random logic gates. In such an implementa
tion, all computations are initiated on a rising edge of the
ADPLL system clock and latched on the subsequent rising F _IIR():

Rd=Rb»(1-a)+Ra»a 40 edge of the clock. This is shown in FIG. 20 which illustrates
a timing diagram of several ADPLL processing clock options
and the current spikes resulting therefrom. Trace 370 is the
FREF system reference clock while trace 374 represents the

A block diagram illustrating the RCV unit 354 for imple
menting the F _IIR() instruction is shown in FIG. 16. This
instruction implements an IIR filtering operation. The shift
amount 'a' is pre-set locally within the RCV. Thus, the RCV 45

is optimized to have the capability of performing an IIR filter
operation in a single instruction cycle. This permits an effi
cient computation of the atomic operations needed to imple
ment the ADPLL within a single reference clock period.

F _SHR Instruction

F _SHR(Ra, Rd):
Rd=Ra»a

A block diagram illustrating the RCV unit 356 for imple
menting the F _SHR() instruction is shown in FIG. 17. This
instruction implements a shifting operation. The shift amount
'a' is pre-set locally within the RCV. The two addition/sub
traction units are bypassed for this instruction.

F _IntAcc Instruction

F _IntAcc(y6, y10):
y9=y6-PhE
y10=y10+y9

processor clock.
Since the majority of circuit switching activity in the PLL

(and also other close-in circuitry) is centered on a rising edge
of the FREF system clock, most of the digital current is being
switched at this edge as well, as indicated by trace 372. These
digital current surges find their way into on -chip DCO and PA

50 circuit nodes in the transmitter and LNA and mixer nodes in
the receiver via various parasitic coupling mechanisms. The
current rush energy due to digital processing at the system
clock rate gets upconverted into the RF spectrum by the DCO,
resulting in unacceptable RF spurs that are close in frequency

55 to the carrier. The Federal Communications Commission
(FCC) rules and numerous wireless communication stan
dards place very low limits on the energy outside of the
information carrying frequency range that is allowed to be
radiated from wireless terminals.

60

A block diagram illustrating the RCV unit 358 for imp le- 65

menting the F _IntAcc() instruction is shown in FIG. 18. This
instruction implements a subtraction and an accumulation

These low frequency RF spurs are normally very difficult
to filter out in a wireless terminal before they are radiated by
the antenna because of their proximity in the spectrum to the
carrier as shown in FIG. 21. The FREF clock spurs 384 are
shown around the carrier 382. The filtering envelope 380 will
not sufficiently attenuate the spurs to meet the various wire
less standards. This is because a high order filtering is
required to block the undesired energy, i.e. a steep filter enve-

US 7,809,927 B2
23

lope is required. The typical combined filtering effects of the
(power amplifier), SAW filter and antenna filter out only a
portion of the energy of these undesired RF spurs, thus mak
ing FCC rules and wireless standard compliance extremely
difficult to meet.

In contrast, the mechanism of the present invention is
operative to perform the atomic operations serially at the
much faster processor rate. At each processor cycle, only a
single instruction is executed resulting in reduced current
transients being generated, as indicated in trace 376. This 10

results in significantly reduced RF spur generation. In the
present invention, the effects these generated spurs have on
RF performance are two-fold: (1) the spurs are shifted to
higher frequencies where they are easier to filter out by the
oscillator's LC tank, DPA matching network, PA matching 15

network, bandpass filtering in the RF front-end module, as
well as overall parasitic RC (resistor-capacitor) network; and
(2) the energy of each spur is reduced.

In accordance with the invention, the software based
ADPLL significantly reduces the generation of RF spurs in 20

sensitive frequency bands of the DRP by changing the fre
quency plan of the switching logic gates. The ASIP/RCU
performs the bulk of computations at the processor clock rate
which is much higher in frequency than that of the system
reference clock (FREF). This result in the RF spurs being 25

shifted outside the sensitive regions close to the carrier fre
quency as shown in FIG. 22. The processing clock spurs 392
are now far away from the carrier 392 and the filtering enve
lope 390 is able to remove these spurs with ease.

It is noted that the total amount of energy consumed in 30

performing computations in the conventionalADPLL and the
software based ADPLL of the invention is substantially the
same. The frequency content of this energy, however, is sig
nificantly different. In case of the conventional ADPLL, the
computation energy is concentrated at the reference clock 35

edges and therefore has strong low frequency harmonic.
In case of the software based ADPLL, the computation

energy is spread out between the reference clock edges
(which mayor may not coincide with the processor clock
edges). The spreading out of the computation energy over the 40

reference clock period serves to create a much higher fre
quency harmonic. When these harmonics mix with the car
rier, they are offset in frequency around the carrier. The fil
tering requirements to remove the undesired RF spurs close to
the carrier are excessive, as in the case of the conventional 45

ADPLL. The further away from the carrier the RF spurs are
located, the more relaxed the filtering requirements become.
Changing the frequency content of the computation energy to
improve the RF spectrum characteristics is referred to as
frequency planning. Such frequency planning also helps to 50

relax circuit design constraints, such as power routing resis
tance and decoupling capacitance values, which contribute to
the magnitude of the energy surges at the clock edges.

Further, the frequency planning can be modified by varying
the amount of oversampling (i.e. the ratio of processor clock 55

frequency to the reference frequency FREF). The frequency
planning can be lowered as long as the minimum required
processing throughput in the processor is maintained. Other
wise, the required atomic operations of the ADPLL may not

24
(step 740). The computation of the atomic operations
required to complete the task are spread out over an entire
reference clock period (step 742). The computation of each
atomic operation occurs at the higher processor clock rate,
rather that the slower reference clock rate (step 744).

ALTERNATIVE EMBODIMENTS

Several embodiments of the processor based mechanism
will now be presented. Each is an alternative implementation
of the software basedADPLL.A block diagram illustrating an
example ASIP based implementation of the softwareADPLL
of the present invention is shown in FIG. 24. The software
based ADPLL, generally referenced 550, comprises a phase
domain calculator 552 that performs the data stream process
ing, DCO 556, programmable fractional-N clock divider 554,
integer feedback block 578 and fractional feedback block
579. The phase domain calculator 552 comprises an ALU
(RCU) 572, instruction and data memory 558, register file
560, sequencer 562, latches 566, 576, multiplexers 564, 568,
570,574.

A block diagram illustrating an example DSP based imple-
mentation of the softwareADPLL of the present invention is
shown in FIG. 25. The software based ADPLL, generally
referenced 580, comprises a phase domain calculator 582,
DCO 586, programmable fractional-N clock divider 584,
integer feedback block 588 and fractional feedback block
590. The phase domain calculator 582 comprises memory
block (RAM/ROM) 594, a DSP core 595, external bus inter
face (l/F) 592, UART 596 and timer 598.

A block diagram illustrating an example hardware state
machine based implementation of the softwareADPLL of the
present invention is shown in FIG. 26. The software based
ADPLL, generally referenced 600, comprises a phase domain
calculator 602, DCO 606, progranlillable fractional-N clock
divider 604, integer feedback block 608 and fractional feed-
back block 610. The phase domain calculator 602 is similar in
construction and operation to the phase calculation 222 (FIG.
10). In particular, the phase domain calculator 602 comprises
flip-flops 612, 616, 624, 630, 634, 656, 650, 638, subtractors
614, 654, adder 628, multipliers 622, 632, 652, accumulators
618, 658, differentiator 636, IIR bocks 620, 626, Lamba
register 640, PRE offset register 642, Gain1 register 646,
Gain2 register 648 and Gain3 register 644.

A block diagram illustrating a first example implementa
tion of the state machine used to implement the software
ADPLL of the present invention is shown in FIG. 27. The
circuit, generally referenced 660, comprises a clock generator
circuit 662 and a plurality of finite state machines (FSMs)
664, 666, 668, 670. The clock generator is operative to gen
erate the clock signals for the functional units, i.e. FSM1,
FSM2, FSM3, FSM4. Although only four units are shown for
the sake of simplicity, it is appreciated that any number of
state machines may be implemented.

The functional units are executed in a sequential manner to
provide the desired overall functionality of a subsystem such
as a PLL or other circuit/task. An input of a functional unit is
connected to the output of the previous unit with the last unit
feeding the first unit. Only a simple circular arrangement is

be completed within a reference clock cycle. 60 shown although the technique is applicable to more compli
cated arrangements as well, such as forking and merging. It is appreciated that the application of the software based

mechanism described herein is not limited to anADPLL. The
mechanism can be applied to any computing or processing
task that can benefit from reduced spur generation. A flow
diagram illustrating the RF spur reduction method of the 65

present invention is shown in FIG. 23. In the general case, the
task is first partitioned into a plurality of atomic operations

The higher frequency clock CKVD 672 is generated by
performing frequency or edge division of the variable clock
CKY. The CKVD clock is used to generate internal clocks
CK1, CK2, CK3, CK4, each one providing significant edges
to its respective functional units FSM1, FSM2, FSM3, FSM4.
The frequency of the CKVD clock is chosen so as to guaran-

US 7,809,927 B2
25

tee that all the elementary functional operations performed by
functional units FSM1, FSM2, FSM3, FSM4 are executed
within a single reference clock FREF cycle 674. This is
accomplished by requiring the CKVD clock to be (in this
example) at least four times faster (i.e. the number of func
tional units) than the FREF clock. In the example presented in
FIG. 27, the frequency ratio is approximately 4.6.

A block diagram illustrating a second example implemen
tation of the state machine used to implement the software
ADPLL of the present invention is shown in FIG. 28. The 10

circuit, generally referenced 680, comprises clock and phase
generator 682 and FSM 684. This figure presents the embodi
ment wherein the functionality of the various functional units
(i.e. FSM1, FSM2, FSM3, FSM4) are merged into a single
reconfigurable finite state machine (FSM). The FSM unit 15

reprograms itself such that its functionality becomes one of
the four units FSM1, FSM2, FSM3, FSM4 of FIG. 27. The
determination of which unit the FSM 684 becomes is con
trolled by the "Phase" signal. The input and output connec
tions between the functional units in FIG. 27 are now stored as 20

state variables internal to the FSM, which now operates at a
higher clock rate 688. The single clock line CK comprises
gaps due to the non-integer frequency ratio of CKVD to
FREF 689.

26
870, comprises an instruction pool 874, data pool 872 and a
plurality of processing units (PUs) 876. A single instruction is
applied to multiple data to perform the same operation.

The parallel implementation of the ASIP of the present
invention utilizes data stream based parallelization as
opposed to instruction level parallelization. Due to data
dependencies, however, these parallel CPU architecture tech
niques are not efficient. The invention provides a novel archi-
tecture comprising mixed parallel and pipeline techniques
that address the disadvantages of the prior art. The architec
ture of the invention is optimized to perform stream data
processing in a more efficient manner.

An example stream data processing model will now be
described. A block diagram illustrating an example stream
data based processing model is shown in FIG. 31. The model,
generally referenced 880, comprises four processing function
blocks 882 labeled F1, F2, F3, F4. In operation, the input
samples (s(l), s(2), s(3), ...) are fed into the processing
function blocks at a fixed sampling rate, e.g., 38.4 MSps.
Each sample is processed through sequential function blocks
(F1, F2, F3, F4) with the final result (0(1), 0(2), 0(3), ...)
being output from final functional block (F4).

A functional processing block may be of one of two types:
(1) recursive or (2) non-recursive. In the case of a recursive

RCU Implementation Using Parallelization and
Pipelining

25 functional processing block type, the current output is not
only related to the current input, e.g., x(n), but is also related
to historical output, e.g., y(n-l). An example of a recursive
functional processing block is an Infinite Impulse Response

As an aid in understanding the principles of the present
invention, as applied exemplarily to the RCU implementa- 30

tion, its enviroument as well as its control mechanism, a brief
overview of parallel processing concepts is provided herein
below. Numerous CPU technologies exist that address
instruction level parallelism and data level parallelism.
Examples of such CPU technologies include superscalar, 35

very long instruction word (VLIW) , explicitly parallel
instruction computing (EPIC), single instruction multiple
data (SIMD), etc.

(IIR) filter:

y(n)~a'x(n)+by(n-l) (8)

Note, that the IIR filter coefficient naming (i.e. 'a' and 'b') in
this section is different than in the previous examples, Equa
tion 7 in particular. An example of a non-recursive functional
processing block, for which the output is not related to his
torical output of the block, is an addition/subtraction block:

y(n)~a'x(n)+b (9)

Note that there are several ways to implement the data
processing functions as described in connection with FIG. 31.
A pure hardwired solution comprises dedicated hardware for
every function block (i.e. F1, F2, F3, F4). A processor based
solution comprises a reconfigurable computation unit (RCU)
controlled by instructions adapted to handle different func
tions (F1, F2, F3, F4).

A block diagram illustrating example processor based data
processing for implementing the model of FIG. 31 is shown in
FIG. 32. The data processor, generally referenced 890, com-

A superscalar architecture executes more than one instruc
tion in a single pipeline stage by pre-fetching multiple 40

instructions and simultaneously dispatching them to redun
dant functional units on the processor, as shown in FIG. 29,
which illustrates superscalar pipeline instruction paralliza
tion. In a superscalar CPU, the dispatcher reads instructions
from memory and determines which instructions can be run 45

in parallel, dispatching them to redundant functional units
contained inside a single CPU. A superscalar processor can,
therefore, be considered to have multiple parallel pipelines,
each of which processes instructions simultaneously from a
single instruction thread. 50 prises an RCU 896 in communication with a control and

configuration block 892 and a register file 894. The RCU
comprises a data interface to the register file for temporary
result storage via read ports 1 and 2 and a write port.

The performance improvement obtainable from using
superscalar techniques is limited, however, by two key areas:
(1) the degree of parallelism intrinsic within the instruction
stream wherein the amount of instruction level parallelism
may be limited due to data dependencies; and (2) the com- 55

plexity and time cost of the dispatcher and associated depen
dency checking logic.

VLIW and EPIC techniques are similar to the superscalar
technique discussed supra in that all the above parallelism
techniques have multiple pipelines running in parallel on 60

different functional units. Thus, their efficiencies are all lim
ited by the degree of intrinsic parallelism in the instruction
stream.

Single instruction multiple data (SIMD) is a technique
employed to achieve data level parallelism. A block diagram 65

illustrating the single instruction multiple data (SIMD) tech
nique is shown in FIG. 30. The system, generally referenced

As an aid to illustrating the operation of the data stream
processor 890, an example is provided to show how the pro
cessor 890 handles the data processing performed in FIG. 31.
For purposes of this example, assume blocks 882 comprises
recursive functional processing blocks F1, F2, F3, F4 that
implement four IIR filters. The four filters can be expressed
mathematically as follows:

F1:y(n)~al *x(n)+bl *y(n-l)

F2:y(n)~a2*x(n)+b2*y(n-l)

F3 :y(n)~a3*x(n)+b3*y(n-l)

F4:y(n)~a4*x(n)+b4*y(n-l) (10)

US 7,809,927 B2
27

where yen) is the current local output of a given filter, x(n) is
the current local input to the filter and y(n-I) is the previous
local output of the filter. Note that the processor comprises
eight registers in register file 894, labeled Rl through R8. The
pseudo code for the data processing in FIG. 31 is presented
below in Listing 2 (assuming al through a4 and bl through b4
is stored within the RCV).

Listing 2: Pseudo-code for the data processing of FIG. 31

Rl~al *s(n) + bl *Rl;
R2~a2 *Rl + b2 *R2;
R3~a3*R2 + b3*R3;
R4~a4*R3 + b4*R4;

Rl~al *s(n+l) + bl *Rl;
R2~a2 *Rl + b2 *R2;
R3~a3*R2 + b3*R3;

IIRI stores the history value for Fl;
IIR2 stores the history value for F2;
IIR3 stores the history value for F3;
IIR4 stores the history value for F4; result is
output o(n).

R4~a4*R3 + b4*R4; Ilresult is output as o(n+l).

A Data Stream Processing Model

With reference to FIG. 32, one instruction controls the
RCV to complete one function within one processor clock
cycle. The processing power of a processor constructed using
the RCV is limited by the speed of operation the RCV can
sustain. Multiple RCVs operating in parallel, however, can
speed up the process. The invention provides a processing
technique using multiple RCVs that have the following capa
bilities. Note that it is assumed that RCV comprises two read
ports and one write port to and from the Register File.

1. A mechanism for controlling multiple RCVs whereby
the size of the instruction does not increase with the use
of multiple RCVs.

2. Historical values for recursive operations are stored
using only one write port to the Register File.

3. Communications between multiple RCVs is handled
locally.

In accordance with the invention, a multi-RCV processing
model is provided comprising a mixed parallel/pipelined
architecture. A block diagram illustrating an example two
stage parallel/pipelined RCV architecture is shown in FIG.
33. The architecture, generally referenced 690, comprises a
two-stage parallel/pipelined processor 691 in communication
with a control/configuration block 708 and register file 710/
718. Note that register file 710/718 are the same register file
drawn twice for clarity sake. The processor 691 comprises
multiplexers 692, 696, 712, 716, registers 694, 704, 714, 706,
delay 698 and RCVl 700, RCV2 702.

The local registers L1 704, L2 706 function to store the
temporal result for each RCV 700, 702, respectively. Note
that in operation, only the first RCV (i.e. RCVl) receives
input from the register file 710. Similarly, only the last RCV
(i.e. RCV2) writes results back to the register file 710/718.
The input sample pairs (i.e. s(I), s(2), ...) are fed to the RCVs

28
Further, RCV2 is operative to always complete the pro

cessing of a sample one cycle later than RCVl. Note that due
to the use oflocal registers associated with each RCV output,
the architecture needs only a single register file read port.
Each RCV unit comprises (1) a feedback path 699, 701 for
RCVl, RCV2, respectively, that is used to perform sequential
functional processing of data samples and (2) a forward path
703 for transferring processing results between logically

10 adjacent RCVs in pipeline fashion. In the feedback path, the
data sample is processed through various functions in sequen
tial fashion, wherein the results output of one function are
used as input to the next function. In the forward path, pro
cessing results are transferred from one RCV to another in

15 pipeline fashion. Normally, the RCVs are logically adjacent
to each other (i.e. mayor may not be physically adjacent)
whereby the processing result output from one RCV are input
to a downstream (i.e. a logically forward adjacent RCV) RCV

20 for further processing.

As an illustrative example, the processing performed by the
two-stage parallel/pipeline RCV architecture 690 of FIG. 33
is presented below in Table 2. The example is operative to
implement four IIR filters. Note that Rdl, Rd2 are outputs of

25 RCVl, RCV2, respectively. Note that with reference to Equa
tion 10, in RCVl, Rdl is analogous to yen), s(I), s(3), etc. is
analogous to x(n) and Rl, R2, etc. is analogous to y(n-I); in
RCV2, Rd2 is analogous to yen) and Rdl is analogous to

30 y(n-I).

TABLE 2

Processing in the two-stage parallel/pipeline Reu architecture

35 RCm RCU2 Comment

Rdl ~ al * s (1) + bl * Rl NA RCU2 waits
for pipeline
to start

Rdl ~ a2 * Rdl + b2 * R2 Rd2 ~ al * s (2) + bl * Rdl Rd2 is also

40 stored in Rl
Rdl ~ a3 * Rdl + b3 * R3 Rd2 ~ a2 * Rd2 + b2 * Rdl Rd2 is also

stored in R2
Rdl ~ a4 * Rdl + b4 * R4 Rd2 ~ a3 * Rd2 + b3 * Rdl Rd2 is also

stored in R3
Rdl ~ al * s (3) + bl * Rl Rd2 ~ a4 * Rd2 + b4 * Rdl Rd2 is also

45 stored in R4
Rdl ~ a2 * Rdl + b2 * R2 Rd2 ~ al * s (4) + bl * Rdl Rd2 is also

stored in Rl
Rdl ~ a3 * Rdl + b3 * R3 Rd2 ~ a2 * Rd2 + b2 * Rdl Rd2 is also

stored in R2
Rdl ~ a4 * Rdl + b4 * R4 Rd2 ~ a3 * Rd2 + b3 * Rdl Rd2 is also

50 stored in R3
Rdl ~ al * s (5) + bl * Rl Rd2 ~ a4 * Rd2 + b4 * Rdl Rd2 is also

stored in R4
Rdl ~ a2 * Rdl + b2 * R2 Rd2 ~ al * s (6) + bl * Rdl Rd2 is also

stored in Rl

55

in parallel, thus comprising the parallel aspect of the archi
tecture. Each input sample is processed in only one RCV (i.e. 60

either RCVl or RCV2). This constitutes the parallel aspect of
the architecture. RCV2 is operative to always perform the
function processing that RCVl performed in the previous
cycle. This constitutes the pipeline aspect of the architecture.
RCV2 is operative to use the historical value from the output 65

of RCVl. This also constitutes the pipeline aspect of the
architecture.

A generalized description of the processing in the paral
leled architecture of FIG. 33 is provided below in connection
with Table 3. With reference to FIGS. 31 and 33, the sequence
of functions performed is Fl---;.F2---;.F3---;.F4---;.Fl---;.F2
The sample sequence comprises s(I)---;.s(2)---;.s(3)---;.s(4)
The time sequence is Tl---;. T2---;. T3---;. T 4 The processor
comprises a two-stage parallel/pipeline comprising RCVl
and RCV2. The term 's(i)---;.Fx' means conduct function Fx
for sample sCi). The term 's(i)---;.Fx(st)' means conduct func
tion Fx for sample sCi) and store the result in the register file.

US 7,809,927 B2
29

TABLE 3

Parallel/Pipeline Calculations

Time RCUl RCU2

Tl S (1)~Fl NA
T2 S (1)~F2 s (2)~Fl (st)
T3 S (1)~F3 s (2)~F2 (st)
T4 S (1)~F4 s (2)~F3 (st)
T5 S (3)~Fl s (2)~F4 (st)
T6 S (3)~F2 s (4)~Fl (st)
T7 S (3)~F3 s (4)~F2 (st)
T8 S (3)~F4 s (4)~F3 (st)
T9 S (5)~Fl s (4)~F4 (st)
TlO S (5)~F2 s (6)~Fl (st)

To achieve a pipelined process, the processor only config
ures the first RCV unit (i.e. RCVl), the second RCV unit (i.e.
RCV2) performs the same processing function with one cycle
delay. For example, at time T3, the processor configures
RCVl to perform function F3 for sample s (1), while RCV2

Time RCUI

Tl s(l)~Fl

T2 s(1)~F2

T3 s(1)~F3

T4 s(1)~F4

T5 s(3)~Fl

T6 s(3)~F2

T7 s(3)~F3

T8 s(3)~F4

T9 s(5)~Fl

is configured to perform function F2 for sample s (2). The
result of function F2 (F2_d) is stored in the register file. Only
the last RCV (i.e. RCV2 in this example) stores its result in the
register file.

Table 4 presented below provides additional detail on the
internal operation of RCVl and RCV2 and an example pro
cessor command for the RCVs. First, we define the notation
for the functions that RCVl and RCV2 perform:

Fx(Ra, Rb, Rd):

Fx (): defines the type of operation performed by RCVl
and RCV2;

Ra: defines the first input for RCVl and RCV2, which may
come from the sample input or RCVl, RCV2 output, i.e.
Rdl, Rd2, respectively;

10

30
In2: defines the second input for RCVl (from the register

file for the historical value of a function unit) and for

RCV2 (always comes from the output ofRCVl);

Out: defines the resulting output ofRCV2, which is stored

in the register file;

Note that Fx_ d is the historical value of functional unit Fx that

is stored in the register Ri.

Let us assume the RCV is performing four IIR functions

repeatedly. Consider time T3, for example, RCVl performs
function F3 for Sl, it uses its own latched output (Rdl) as

15 input along with the historical value of function F3 (F3_d)

from the register file. The result is not stored in the register file

but rather is locally latched. RCV2 performs function F2 for

s (2), it uses the output from RCVl (Rdl) along with the local
20 latched result (Rd2) from the previous cycle. The result is

stored in the register file.

TABLE 4

Pipelined Processing Within the RCUs

RCU2 RCUl(Ra, Rb, Rd) RCU2(Ra, Rb, Rd) RCU(Ra, Rb, Rd)

Fl(s(l), FLd, Rdl) Fl(s(l), Rl, NA)
s(2)~Fl(st) F2(Rdl, F2_d, Rdl) Fl(s(2), Rdl, Rl) F2(s(2), R2, Rl)
s(2)~ F2(st) F3(Rdl, F3_d, Rdl) F2(Rd2, Rdl, Rd2) F3(NA, R3, R2)
s(2)~ F3(st) F4(Rdl, F4_d, Rdl) F3(Rd2, Rdl, Rd2) F4(NA, R4, R3)
s(2)~ F4(st) Fl(s(3), FLd, Rdl) F4(Rd2, Rdl, Rd2) Fl(s(3), Rl, R4)
s(4)~Fl(st) F2(Rdl, F2_d, Rdl) Fl(s(4), Rdl, Rd2) F2(s(4), R2, Rl)
s(4)~F2(st) F3(Rdl, F3_d, Rdl) F2(Rd2, Rdl, Rd2) F3(NA, R3, R2)
s(4)~F3(st) F4(Rdl, F4_d, Rdl) F3(Rd2, Rdl, Rd2) F4(NA, R4, R3)
s(4)~F4(st) Fl(s(5), FLd, Rdl) F4(Rd2, Rdl, Rd2) Fl(s(5), Rl, R4)

Characteristics for the two-stage parallel/pipelined process
are presented hereinbelow. Two data samples are fed into the

40 RCV (the term RCV denotes the combination of all RCVs,
i.e. RCVl and RCV2) which are processed in a pipelined
maunerforallfunctions (i.e. Fl~F2~F3 ...). ThefirstRCV
unit (RCVl) processes the first sample and the second RCV
unit (RCV2) processes the second sample. The processor

45 configures only RCVl, whereby RCV2 performs the process
ing function that RCVl performed in the previous cycle. For
processing functions comprising a memory unit, only the
result from the last RCV unit that processes the last sample
(i.e. RCV2 in this example embodiment) needs to be stored in

50 the register file. The value stored in the register file is used in
the subsequent cycle by the first RCV (i.e. RCVl). After
receiving a new sample data, each RCV unit takes its own
output as input for the subsequent function. The RCV2 unit

Rb: defines the second input for RCVl (from the register
file) and for RCV2 (always comes from the output of 55

RCUl);

takes the output from the RCVl unit as a historical value.
Several example instructions for the RCV are provided

below:

Out: defines the resulting output;

For the RCV as a whole (i.e. includes both RCVl, RCV2),
the meaning is slightly different than that above:

Fx(Inl, In2, Out):

Fx (): defines the type of operation RCVl and RCV2 will
perform in the next cycle.

This instruction is operative to input data Si (where "i" is an
60 odd number) to RCVl to perform function FI. The historical

value for function Fl is retrieved from register R_I. RCV2
performs the function last for sample "i-I" and stores the
result in register R_last.

Inl: defines the first input for RCVl, RCV2, which may 65

come from the sample input or RCVl, RCV2 output, i.e.
Rdl, Rd2, respectively;

F2(In, R_2, R_l):

RCVl performs function F2 for sample "i-I", wherein the
historical value for function F2 is taken from R_2. This

US 7,809,927 B2
31

instruction is operative to input data Si (wherein "i" is even
number) to RCV2 to perfonn function Fl. The historical
value for function Fl is taken from RCVl. The result is stored
in register R_l.

32
to register L12. At time T6, RCVl needs to use the data
contents of both registers L11 and L12 for the fork merge.

The control aspect of the RCV unit will be described in
more detail. A block diagram illustrating control of an

Fi(NA, Rj, R_k):

For this instruction, RCVl perfonns function Fl with input
coming from the local output of RCVl and the historical
value for function Fl is taken from register Rj. RCV2 per
forms function Fi-l with historical value taken from RCVl.
The result is stored in register R_k.

5 example RCV is shown in FIG. 36. The circuit, generally
referenced 770, comprises an RCV control block 771,
instruction fetching block 786 and instruction decoding block
788. The RCV block 771 comprises multiplexers 774, 782,
784, registers 772, L11 778, LI2 780 and RCV unit 776. The

It is appreciated that from the above analysis, one skilled in
the art can build a fixed relation between function index and

10 circuit of FIG. 36 highlights the control signals within the
ASIP for controlling the RCV. All the control signals for the
RCV are provided by the instruction decoding block 788.

the input and output register locations. In this manner, the
instruction coding space required can be reduced signifi- 15

cantly.

Data Path Forking

A block diagram illustrating control of an example three
stage pipelined/parallel RCV is shown in FIG. 37. The circuit,
generally referenced 790, comprises three-stage pipeline
RCV and control block 791, instruction fetching block 792
and instruction decoding block 794. The three-stage pipeline
RCV and control block 791 comprises control signal delay
latches 796, 798 and RCV units 800, 802, 804. An advantage

20 of the parallel RCV structure of the present invention is that
the control of the sub RCVs, i.e. RCVl, RCV2, RCV3, is the
same but with a pipelined delay. The pipelined delay is
handled through the delay latching of CtI_LI (delay latch
796) and CtI_L2 (delay latch 798).

With reference to FIGS. 6 and 10, there are two data paths
operating in parallel in the ADPLL loop filter path: one is a
proportional filter and the second is an integral filter. Thus,
this is not a single path data processing mode as is shown in
FIG. 31, but rather a data stream comprising forking and
merging. A block diagram illustrating an example data path 25

incorporating forking and merging is shown in FIG. 34. The
example data path, generally referenced 720, comprises a
plurality offunction blocks 722 (i.e. Fl, F2, F3, F4, F5, F6,
F7). Function block F6 is a processing function that does not
have a memory element (i.e. no historical value is needed for 30

its calculation).
To handle the data path forking and merging, an additional

latch unit is added for each RCV to latch the result for the
other data path as shown in FIG. 35 which illustrates a block
diagram of an example parallel/pipelined architecture incor
porating forking handling capability. The additional loop
back data path from the output ofeachRCV unit (751, 761) to

Three-Stage Pipeline

A block diagram illustrating an example three-stage paral
lel/pipelined RCV architecture is shown in FIG. 38. The
circuit, generally referenced 810, comprises three-stage pipe
lined/parallel processor 811 and register files 812, 814. The
three-stage pipelined/parallel processor comprises multi
plexers 816, 820, 828, 830, 836, 844, 846, 850, 858, 860, 832,
registers 818, L11 824, LI2 826, 834, L21 840, L22 842, 848,

35 L31 854, L32 856 and RCV units RCVl 822, RCV2 838,
RCU3 852.

its respective input serves to handle fork merging. This archi
tecture allows the RCV internal pipeline to keep running
without being affected by forking and merging in the data 40

path. Note that loop back path 751 also serves as a forward
path for transferring processing results from one RCV to a
logically adjacent RCV.

A diagram illustrating the data processing within the three
stage parallel/pipeline processor of FIG. 38 is shown in FIG.
39. The diagram shows how data samples are processed
within the three-stage parallel/pipelined processor 811 (FIG.
38). The zigzagged cross line highlights the data stream pro
cessing for function Fl. Samples SI, S2, S3, ... are succes
sively processed. The processed result generated by RCV3 is
stored in the register file for use by RCVl two cycles later. It
is appreciated that this example processor can be modified to
comprise any number of RCV units arranged in the same
pipeline/parallel arrangement as shown in FIG. 38.

The architecture, generally referenced 730, comprises a
two-stage parallel/pipelined processor 731 in communication 45

with a control/configuration block (not shown) and register
file 742,766. The processor 731 comprises multiplexers 732,
738, 752, 754, 740, 760, 762, 764, registers 734, 736, L11
748, LI2 750, L21 756, L22 758 and RCVl 744, RCV2 746.

It is intended that the appended claims cover all such fea
tures and advantages of the invention that fall within the spirit

TABLE 5

Forking Processing Inside the Two-Stage RCU

Time RCUI RCU2 RCU1(Ra, Rb, Rd) RCU2(Ra, Rb, Rd)

T1 s(l)~Fl Fl(Sl, FLd, L11)
T2 s(1)~F2 S2~Fl(st) F2(L11, F2_d, L11) Fl(S2, L11, L21)
T3 s(1)~F3 S2~F2(st) F3(L11, F3_d, L12) F2(L21, L11, L21)
T4 s(1)~F5 S2~F3(st) F5(L11, F5_d, L11) F3(L21, L12, L22)
T5 s(1)~F4 S2~F5(st) F4(L12, F4_d, L12) F5(L21, L11, L21)
T6 s(1)~F6 S2~F4(st) F6(L12, L11, L11) F4(L22, L12, L22)
T7 s(1)~F7 S2~F6(st) F7(L11, F7_d, L11) F6(L22, L21, L21)
T8 s(3)~Fl S2~F7(st) Fl(S3, FLd, L11) F7(L21, L11, L21)
T9 s(3)~F2 S4~Fl(st) F2(L11, FLd, L11) Fl(S3, Rdl, L21)

For RCVl, forking begins at time T3 and merges at time
T6. At time T3, RCVl takes data from register L11 but writes

RCU(Ra, Rb, Rd)

Fl(Sl, R_l, NA)
F2(S2, R_2, R_l)
F3(NA, R_3, R_2)
F5(NA, R_5, R_3)
F4(NA, R_ 4, R_5)
F6(NA,NA,R_4)
F7(NA, R_7, NA)
Fl(S3, R_l, R_7)
F2(S4, R_2, R_l)

65
and scope of the present invention. As numerous modifica
tions and changes will readily occur to those skilled in the art,

US 7,809,927 B2
33

it is intended that the invention not be limited to the limited
number of embodiments described herein. Accordingly, it
will be appreciated that all suitable variations, modifications
and equivalents may be resorted to, falling within the spirit
and scope of the present invention.

What is claimed is:
1. A processor, comprising:
A. a plurality of reconfigurable calculation units coupled

both in parallel wherein input data samples are fed in
parallel thereto and in a pipelined configuration wherein 10

results from one reconfigurable calculation unit are
input to a reconfigurable calculation unit logically adja
cent thereto;

B. each reconfigurable calculation unit including:
i. a feedback path to perfonn sequential functional pro- 15

cessing of input data samples in which an input data
sample is processed through various functions in
sequential fashion and the results output of one func
tion are used as input to the next function; and

ii. a forward path to transfer processing results between 20

logically adjacent reconfigurable calculation units;
C. a hardware register file to store historical result values

generated by a last reconfigurable calculation unit in the
pipeline; and

D. an instruction decoder to generate the same control and 25

configuration signals for all reconfigurable calculation
units but with a pipelined delay therebetween so that an
upstream unit receives a control and configuration signal
before a downstream unit.

30
2. The processor according to claim 1, wherein each recon-

figurable calculation unit comprises local registers for storing
temporary computation results.

3. The processor according to claim 1, wherein only an
upstream reconfigurable calculation unit reads previously 35

written result data from the register file.
4. The processor according to claim 1, wherein an input

data sample is processed in a single reconfigurable calcula-

34
111. a loopback path to support forking and merging

operations;
C. a hardware register file to store historical result values

generated by a last reconfigurable calculation unit in the
pipeline; and

D. an instruction decoder to generate the same control and
configuration signals for all reconfigurable calculation
units but with a pipelined delay therebetween so that an
upstream unit receives a control and configuration signal
before a downstream unit.

9. The data stream processor according to claim 8, wherein
the loop back path comprises one or more latches coupling a
reconfigurable calculation unit output to its input thereby
latching results for forking and merging operations.

10. The data stream processor according to claim 8,
wherein each reconfigurable calculation unit comprises local
registers for storing temporary computation results.

11. The data stream processor according to claim 8,
wherein only an upstream reconfigurable calculation unit
reads previously written result data from the register file.

12. The data stream processor according to claim 8,
wherein an input data sample is processed in a single recon
figurable calculation unit.

13. The data stream processor according to claim 8,
wherein a downstream processing reconfigurable calculation
unit processes a same processing function processed by an
upstream reconfigurable calculation unit logically adjacent
thereto in a previous cycle.

14. The data stream processor according to claim 8,
wherein a downstream processing reconfigurable calculation
unit uses a historical value output by an upstream reconfig
urable calculation unit logically adjacent thereto in a previous
cycle.

15. The data stream processor according to claim 8,
wherein each reconfigurable calculation unit utilizes its own
output as input for a subsequent processing function after
processing a new input sample data.

tion unit.
5. The processor according to claim 1, wherein a down

stream processing reconfigurable calculation unit processes a
same processing function processed by an upstream recon
figurable calculation unit logically adjacent thereto in a pre
vious cycle.

16. A data stream processing method, the method compris-
40 ing the steps of:

6. The processor according to claim 1, wherein a down- 45

stream processing reconfigurable calculation unit uses a his
torical value output by an upstream reconfigurable calcula
tion unit logically adjacent thereto in a previous cycle.

7. The processor according to claim 1, wherein each recon
figurable calculation unit utilizes its own output as input for a 50

subsequent processing function.
8. A data stream processor, comprising:
A. a plurality of reconfigurable calculation units coupled

both in parallel and in a pipelined configuration wherein
input data samples are fed in parallel to said the recon- 55

figurable calculation units and processing results are
transferred from one reconfigurable calculation unit to
another in the pipeline configuration;

B. each reconfigurable calculation unit including:
i. a feedback path to perfonn sequential functional pro- 60

cessing of the input data samples in which an input
data sample is processed through various functions in
sequential fashion and the results output of one func
tion are used as input to the next function;

ii. a forward path to transfer processing results between 65

logically adjacent reconfigurable calculation units;
and

A. coupling a plurality of reconfigurable calculation units
both in parallel and in a pipelined configuration, includ
ing feeding input data samples in parallel to the recon
figurable calculation units and processing them in the
pipelined configuration;

B. performing sequential functional processing of the input
data samples within each reconfigurable calculation
unit;

C. transferring processing results between logically adja
cent reconfigurable calculation units; and

D. generating the same control and configuration signals in
an instruction decoder for all reconfigurable calculation
units but with a pipelined delay therebetween so that an
upstream unit receives a control and configuration signal
before a downstream unit.

17. The data stream processing method according to claim
16, further including the step of perfonning forking and
merging operations using a loopback path in each reconfig
urable calculation unit.

18. The data stream processing method according to claim
16, further including the step of reading historical result val
ues from a register file by an upstream reconfigurable calcu
lation unit and writing results values to the register file by a
downstream reconfigurable calculation unit.

19. A processor based phase locked loop (PLL), compris
ing:

US 7,809,927 B2
35

A. an oscillator to generate a radio frequency (RF) signal
having a frequency determined in accordance with a
tuning command input thereto;

B. a processor to generate the tuning command including a
plurality of reconfigurable calculation units coupled
both in parallel and in a pipelined configuration wherein
input data samples are fed alternately to the reconfig
urable calculation units and processed in the pipelined
configuration;

C. hardware program memory coupled to the reconfig- 10

urable calculation units for storing a plurality of instruc
tions that when executed on the processor implement the
phase locked loop; and

D. an instruction decoder to generate the same control and
configuration signals for all reconfigurable calculation 15

units but with a pipelined delay therebetween so that an
upstream unit receives a control and configuration signal
before a downstream unit.

20. The processor based phase locked loop according to
claim 19, wherein each reconfigurable calculation unit com- 20

prises a loop back path to support forking and merging opera
tions.

21. The processor based phase locked loop according to
claim 19, wherein an input data sample is processed in a
single reconfigurable calculation unit. 25

22. A radio having a transmitter coupled to an antenna, the
transmitter including a software based phase locked loop
(PLL), and the phase locked loop comprising:

A. an oscillator to generate a radio frequency (RF) signal
having a frequency determined in accordance with a 30

tuning command input thereto;
B. a processor to generate the tuning command, the pro

cessor including:
C. a plurality of reconfigurable calculation units coupled

both in parallel and in a pipelined configuration wherein

36
input data samples are fed in parallel to the reconfig
urable calculation units and processed in the pipelined
configuration, each reconfigurable calculation unit per
forming atomic operations required to implement said
the phase locked loop and including:

D. a feedback path to perform sequential functional pro
cessing of input data samples in which a data sample is
processed through various functions in sequential fash
ion and the results output of one function are used as
input to the next function;

E. a forward path to transfer processing results between
logically adjacent reconfigurable calculation units; and

F. a loop back path to support forking and merging opera
tions;

G. a hardware register file communicatively coupled to an
upstream reconfigurable calculation unit and a down
stream reconfigurable calculation unit;

H. program memory coupled to the reconfigurable calcu
lation units for storing a plurality of instructions that
when executed on the processor implement the phase
locked loop;

1. the processor having an instruction set, wherein each
instruction is to perform an atomic operation of the
phase locked loop;

J. a receiver coupled to said the antenna; and
K. a baseband processor coupled to the transmitter and the

receiver; and
L. an instruction decoder to generate the same control and

configuration signals for all reconfigurable calculation
units but with a pipelined delay therebetween so that an
upstream unit receives a control and configuration signal
before a downstream unit.

* * * * *

